Geo technical Investigation and
Topographic Survey for Landfill
Site in GujranwalaGeotechnical
Investigation ReportThe report presents findings of the field investigation
laboratory testing and geotechnical recommendations for
Geo technical Investigation and Topographic Survey for
Landfill Site in Gujranwala.[January 20154]

Table of Contents

Fitle				
Exec	utive S	ummary	1	
1.		Introduction	2	
	1.1.	Scope of Report	2	
	1.2.	Objectives of Investigations	2	
	1.3.	Proposed Development	2	
	1.4.	Scope of Work 1.4.1. Field Investigations 1.4.2. Laboratory Tests	2 2 3	
2.		Site Description	4	
	2.1.	Location of the Project Site	4	
	2.2.	Geology and Seismicity of the Area 2.2.1. Geology 2.2.2. Seismicity	4 4 4	
	2.3.	Current Use of Project Area	4	
	2.4.	Topography of Project Area	4	
3.		Subsurface Exploration	5	
	3.1.	General	5	
	3.2.	Drilling	5	
	3.3.	Standard Penetration Tests (SPT)	5	
	3.4.	Sampling 3.4.1. Disturbed Soil Samples 3.4.2. Undisturbed Soil Samples 3.4.3. Ground Water Samples	5 5 6 6	
	3.5.	Installation of Piezometers	6	
	3.6.	Field Permeability Test	7	
4.		Laboratory Test Results	8	
	4.1.	Grain Size Analysis	8	
	4.2.	Hydrometer Analysis	8	
	4.3.	Atterberg Limits	9	

Managem		
A.1	. Site Location Map	A-2
Annexure	A. Drawings	A-1
8.	References	20
7.	Conclusions	19
6.6	 Design and Construction Aspects of Land Fill 6.6.1. Formation of Temporary and Final Cover 6.6.2. Excavation at Site 6.6.3. Liquefaction Potential 6.6.4. Cement Type 	17 17 18 18 18
6.5	 Constraints and Risks 6.5.1. Damp Proofing and Surface Drainage 6.5.2. Contaminated Land 6.5.3. Quality Control 	17 17 17 17
6.4	Construction of Roads & Embankments 6.4.1. Formation of Subgrade and Embankment 6.4.2. Borrow Placement and Compaction	16 16 16
6.3	. Lateral Earth Pressure 6.3.1. Static Earth Pressure Coefficients 6.3.2. Dynamic Earth Pressure Coefficients	15 15 16
6.2	 Foundations 6.2.1. Proposed Structures 6.2.2. Design of Shallow Foundations 6.2.3. Modulus of Subgrade Reaction 6.2.4. Placement of Granular Fill 	14 14 14 14 15
6.1	Earthworks 6.1.1. Ground Preparation	14 14
6.	Engineering Considerations	14
5.4	 Geotechnical Design Parameters 5.4.1. Summary of Design Parameters 5.4.2. Discussion on Design Parameters 5.4.3. Geotechnical Design Criteria 	12 12 12 12
5.3	Groundwater Table	12
5.2	Ground Conditions	11
5.	Ground Conditions and Engineering Properties	11
4.8.		10
4.7	Oedometer Test (OED)	10
4.6	. Unconfined Compressive Strength	10
4.5	Direct Shear Test	9
4.4	Natural Moisture Content	9

A.2.Geotechnical Investigation PlanA-A.3.Geological Map of the Project AreaA-A.4.Seismic Map of PakistanA-A.4.Seismic Map of PakistanB-Annexure B.FiguresB-B.1.Variation of SPT Blows with DepthB-B.2.Summary of Laboratory Test Results B.2.1.B-B.2.Summary of Strength Related Test ResultsB-B.3.Allowable Bearing Capacity Curve B.3.1.Square/Rectangular Foundation B-B.3.2.Strip FoundationB-B.3.2.Strip FoundationB-D.1.Borehole LogsD-D.1.Borehole LogsD-Annexure E.Laboratory Test DataError! Bookmark not definedAnnexure F.Site PhotographsE-			
A.3.Geological Map of the Project AreaA-A.4.Seismic Map of PakistanA-A.4.Seismic Map of PakistanA-Annexure B.FiguresB-B.1.Variation of SPT Blows with DepthB-B.2.Summary of Laboratory Test ResultsB-B.2.1.Laboratory Classification TestingB-B.2.2.Summary of Strength Related Test ResultsB-B.3.Allowable Bearing Capacity CurveB-B.3.1.Square/Rectangular FoundationB-B.3.2.Strip FoundationB-B.3.2.Strip FoundationB-D.1.Borehole LogsD-D.1.Borehole LogsD-Annexure E.Laboratory Test DataError! Bookmark not definedAnnexure F.Site PhotographsE-	A.2.	Geotechnical Investigation Plan	A-1
A.4.Seismic Map of PakistanA-Annexure B.FiguresB-B.1.Variation of SPT Blows with DepthB-B.2.Summary of Laboratory Test ResultsB-B.2.1.Laboratory Classification TestingB-B.2.2.Summary of Strength Related Test ResultsB-B.3.3.Allowable Bearing Capacity CurveB-B.3.1.Square/Rectangular FoundationB-B.3.2.Strip FoundationB-B.3.1.Square/Rectangular FoundationB-B.3.2.Strip FoundationB-D.1.Borehole LogsD-D.1.Borehole LogsD-Annexure E.Laboratory Test DataError! Bookmark not definedAnnexure F.Site PhotographsE-	A.3.	Geological Map of the Project Area	A-1
Annexure B. FiguresB-B.1.Variation of SPT Blows with DepthB-B.2.Summary of Laboratory Test ResultsB-B.2.1.Laboratory Classification TestingB-B.2.2.Summary of Strength Related Test ResultsB-B.3.Allowable Bearing Capacity CurveB-B.3.1.Square/Rectangular FoundationB-B.3.2.Strip FoundationB-D.1.Site Investigation LogsD-D.1.Borehole LogsD-Annexure E.Laboratory Test DataError! Bookmark not definedAnnexure F.Site PhotographsE-	A.4.	Seismic Map of Pakistan	A-1
B.1.Variation of SPT Blows with DepthB-B.2.Summary of Laboratory Test Results B.2.1.B-B.2.1.Laboratory Classification Testing B.2.2.B-B.3.Allowable Bearing Capacity Curve B.3.1.B-B.3.Allowable Bearing Capacity Curve B.3.2.B-B.3.Square/Rectangular Foundation B.3.2.B-Annexure C.Field Permeability Test DataC-Annexure D.Site Investigation LogsD-D.1.Borehole LogsD-Annexure E.Laboratory Test DataError! Bookmark not definedAnnexure F.Site PhotographsE-	Annexure B.	Figures	B-1
B.2.Summary of Laboratory Test Results B.2.1.B- B.2.2.B.2.1.Laboratory Classification Testing B.2.2.B- B.3.B.3.Allowable Bearing Capacity Curve B.3.1.B- Square/Rectangular Foundation B.3.2.B- B- B- B- B- B- B- D-Annexure C.Field Permeability Test DataC- D- D- D- D- D- D-1.Borehole LogsD- D- D- D- D-Annexure E.Laboratory Test DataError! Bookmark not definedAnnexure F.Site PhotographsE-	B.1.	Variation of SPT Blows with Depth	B-2
B.3.Allowable Bearing Capacity Curve B.3.1.B-B.3.1.Square/Rectangular Foundation B.3.2.B-Annexure C.Field Permeability Test DataC-Annexure D.Site Investigation LogsD-D.1.Borehole LogsD-Annexure E.Laboratory Test DataError! Bookmark not definedAnnexure F.Site PhotographsE-	B.2.	Summary of Laboratory Test Results B.2.1. Laboratory Classification Testing B.2.2. Summary of Strength Related Test Resu	B-4 B-5 B-1
Annexure C. Field Permeability Test Data C- Annexure D. Site Investigation Logs D- D.1. Borehole Logs D- Annexure E. Laboratory Test Data Error! Bookmark not defined Annexure F. Site Photographs E-	B.3.	Allowable Bearing Capacity Curve B.3.1. Square/Rectangular Foundation B.3.2. Strip Foundation	B-1 B-1 B-1
Annexure D. Site Investigation Logs D- D.1. Borehole Logs D- Annexure E. Laboratory Test Data Error! Bookmark not defined Annexure F. Site Photographs E-	Annexure C.	Field Permeability Test Data	C-1
D.1.Borehole LogsD-Annexure E.Laboratory Test DataError! Bookmark not definedAnnexure F.Site PhotographsE-	Annexure D.	Site Investigation Logs	D-7
Annexure E. Laboratory Test DataError! Bookmark not definedAnnexure F. Site PhotographsE-	D.1.	Borehole Logs	D-8
Annexure F. Site Photographs E-	Annexure E.	Laboratory Test Data	Error! Bookmark not defined.
	Annexure F.	Site Photographs	E-1

List of Tables

Table 1-1:	List of Field Tests	3
Table 1-2:	List of Laboratory Tests	3
Table 3-1 - Grou	and Water Level Observation during Field Investigation	6
Table 5-1:	Summary of Ground Conditions	11
Table 5-2:	Summary of Design Parameters	12
Table 6-1:	Borrow Compaction Parameters	16

Executive Summary

"Gujranwala Waste Management Company intends to build a landfill site in Gujranwala. The project site is located at about 4.5 km towards Bakhriyawali Village from Canal Crossing at Alipur Chatta Road. This is about 3.5 km off Gujranwala Pindi Bypass Road. The location of the site can be seen in the Site Location Map attached as AnnexureA.1.

Keeping in view the layout of the proposed structures, Gujranwala Waste Management Company provided the requirement of the Geotechnical Investigation to be implemented for the design and evaluation of the proposed structure.

For evaluation of sub-surface soil parameters and safe design of foundations, it was essential to carry out Geotechnical Investigations. M/s Lean & Green Private Limited carried out Geotechnical Investigations at the project site. The Scope of Work (SOW) was defined considering the current project requirements provided by the client. Four (4) boreholes of 30 m depth and five Auger holes of 10 m depth were planned to assess the ground condition for supporting the proposed structure.

Probabilistic Seismic Hazard Assessment (PSHA) carried out for revision of seismic provisions of the Building Code of Pakistan, shows that the site area falls in Zone 2A. It is therefore, recommended that the project structures should be designed to cater for the requirements of Zone 2Aof Building Code of Pakistan (2007).

The top surface comprises vegetative cover which is underlain by Lean Clay/Silt (Soft to firm), up to 1 m depth, the material is underlain by Silty Sand (Medium Dense to Dense) up to a maximum investigated depth of 30 m depth below NSL.

Groundwater was encountered at a depth of about 6 m in the boreholes drilled up to a maximum depth of 30 m below NSL. However, seasonal variation can result into increase of groundwater table, in the upper layer of soil.

The bearing capacity curves are provided in the Annexure B.3.

The evaluation of the bearing capacity of the Square/Rectangular Foundation has been done using approach given by Terzaghi, Elastic theory and other established correlations. The analysis has been carried out for a depth of foundation 1.5 m below NSL.

Similarly, the evaluation of the bearing capacity of the Strip Foundation has been done. The analysis has been carried out for a depth of foundation 1.5 m below NSL.

1. Introduction

1.1. Scope of Report

Gujranwala Waste Management Company (GWMC) has planned the construction of a Landfill Site in Gujranwala. The project site is located at about 4.5 km towards Bakhriyawali Village from Canal Crossing at Alipur Chatta Road, this is about 3.5 km off Gujranwala Pindi Bypass Road. Keeping in view the layout of the proposed structures GWMC provided the requirement of the Geotechnical Investigation to be implemented for the design and evaluation of the proposed structure.

For evaluation of sub-surface soil parameters and safe design of foundations, it was essential to carry out Geotechnical Investigations. M/s Lean & Green Private Limited was assigned the task to carry out Geotechnical Investigations at the project site. This Geotechnical Investigation report provides detail of current site conditions and interpretation of the investigation works carried out for the design and evaluation of proposed foundations. In addition, the report also delineates the guidelines and recommendations on geotechnical aspects to be used for structural design as well as considerations for construction activity.

1.2. Objectives of Investigations

The geotechnical investigation were undertaken to meet the following objectives:

- To delineate the subsoil conditions of the site area.
- To evaluate the geotechnical design parameters for various structures

1.3. Proposed Development

The proposed project involves Construction of Landfill Site in Gujranwala.

1.4. Scope of Work

The Scope of Work (SOW) was defined considering the current project requirements provided by the client. The Geotechnical Investigation was accordingly planned to assess the ground condition for supporting the proposed structure.

1.4.1. Field Investigations

The Scope of Work (SOW) was defined considering the current project requirements provided by the client. Four (4) boreholes of 30m depth and five Auger holes of 10 m depth were planned to assess the ground condition for supporting the proposed structure.

In addition to above three of the boreholes were converted in to piezometers, for long term monitoring of fluctuation of ground water table. Five (5) permeability tests were performed in the auger holes drilled at site up to maximum investigation depth of 10 m below NSL. The field investigations were performed as per the latest ASTM standards listed in Table 1-1

Table 1-1: List of Field Tests

No.	Field Test	ASTM / BS Standard
1.	Standard Penetration Tests (SPT)	ASTM D1586-11

1.4.2. Laboratory Tests

Samples collected from the boreholes were subjected to the following tests, as per latest ASTM, AASHTO, BS or equivalent Standards, as listed in Table 1-2:

Table 1-2: List of Laboratory Tests

No.	Laboratory Test	ASTM / BS Standard
1.	Grain Size Analysis (GSD)	ASTM D421-85(07), ASTM D422-63(07)
2.	Hydrometer Analysis (HMA)	ASTM D422-63(07)
3.	Atterberg Limits (ATL)	ASTM D4318-00
4.	Natural Moisture Content (NMC)	ASTM D2216-10
5.	Direct Shear Test (DST)	ASTM D3080-11
6.	Unconfined Compressive Strength (UCS)	ASTM D2166-13
7.	Oedometer Test (OED)	ASTM D2435-11
8.	Chemical Tests (CHM)	BS 1377-3:1990

2. Site Description

2.1. Location of the Project Site

The project site is located at about 4.5 km towards Bakhriyawali Village from Canal Crossing at Alipur Chatta Road, this is about 3.5 km off Gujranwala Pindi Bypass Road. The location of the site can be seen in the Site Location Map attached as AnnexureA.1

2.2. Geology and Seismicity of the Area

2.2.1. Geology

The project site is located in Punjab, which is a plain of Alluvial material and scattered rocks at deeper depth. A Geological Map showing the Geological distribution of the area is provided in Annexure A.3Geological Map of the Project Area.

2.2.2. Seismicity

Probabilistic Seismic Hazard Assessment (PSHA) carried out for revision of seismic provisions of the Building Code of Pakistan, shows that the site area falls in Zone 2A. It is therefore, recommended that the project structures should be designed to cater for the requirements of Zone 2Aof Building Code of Pakistan (2007).

A plan showing various zones of Pakistan as per Latest Seismic Microzonation as given in the Building code of Pakistan is attached with this report as Annexure A.4.

2.3. Current Use of Project Area

The site area is currently open, and partly in use as agriculture and mostly for borrowing the material for nearby earth works.

2.4. Topography of Project Area

The topographically the site area used to be a fairly plain. But after start of borrowing of soil, it has developed depressions of more than 6 m in the most of area which is now filled with water. The area under cultivation is fairly plain.

3. Subsurface Exploration

3.1. General

The field investigation was performed under full time supervision by our experienced geotechnical engineer who supervised drilling operation, sampling and logging and top supervised the laboratory testing. The field tests that were performed are listed in Table 1-1

3.2. Drilling

A total of nine (9) boreholes of maximum borehole depth of thirty meters (30 m) were planned at the project site. The field investigation was supported by relevant laboratory testing. The drilling and sampling work has been performed using the standards, procedures and equipment's recommended for engineering site investigation. The exact location of boreholes has been marked on the ground in the presence of the client's representative.

3.3. Standard Penetration Tests (SPT)

Standard penetration test is by far the most popular and economical method of obtaining subsurface information. It is carried out to assess the in-situ compactness of various soil layers. Significant numbers of foundation design procedures make use of SPT results.

Testing method essentially consists of driving split spoon sampler of specified dimensions up to a distance of 46cm into the soil at bottom of borehole. A 63.5kg hammer failing free from a height of 76cm is used to drive the sampler. Number of blows required to drive the sampler were carried out in accordance with the specification of ASTM D1586-11. Continuous standard penetration test is performed wherever possible.

The SPT's were carried out at an interval of 1m in boreholes. A total of one hundred sixteen (116) SPT's were performed. Annexure B.1 shows the variation of SPT blows with depth and the detail of SPT Results are given in the individual borehole logs in Annexure D.1.

3.4. Sampling

Collection of representative samples forms an essential part of investigation program. The following types of samples have been collected for this Project.

3.4.1. Disturbed Soil Samples

Disturbed soil samples were obtained either from the Auger/bailer as the borehole was advanced or from the spilt spoon sampler after performing Standard Penetration Test (SPT). Disturbed samples were used to classify the soil type and depth of occurrence of different layers, and were preserved, for laboratory testing. All the samples obtained from the boreholes were properly preserved in polythene bags and labelled as disturbed samples. The entire sampling, preservation and transportation of the samples were carried out as per latest ASTM standards.

3.4.2. Undisturbed Soil Samples

A total of four (4) undisturbed soil samples were recovered from the boreholes, using Pitcher samplers. After determining the in-situ density, the samples were properly waxed, labelled and preserved before transportation to the laboratory.

3.4.3. Ground Water Samples

The groundwater table was encountered at a depth of about 6m below NSL, during geotechnical investigations carried out at site. A total of four (4) water sample were collected from the boreholes.

The most of the exiting site area has been ponded apparently with the ground water and rain water accumulated in the deep excavated area more than 6 m.

3.5. Installation of Piezometers

A total of three auger holes were converted in to Piezometers for the purpose of ground water table monitoring in the long term. The auger holes were drilled up to a depth of 10 m below NSL and were converted in to piezometers by installing PVC slotted pipes wrapped with non-woven geotextile as a filter material. The observations of the water level at the time of field investigation are given in Table 3-1 - Ground Water Level Observation during Field Investigation

Borehole No.	Surface Elevation (m)	Bottom Elevation	Depth of Water	Water Elevation
BH-1	498.00	468.00	6.00	492.00
BH-2	495.62	465.62	4.00	491.62
BH-3	493.47	463.47	5.50	487.97
BH-4	495.78	465.78	4.50	491.28
BHA-1	496.38	486.38	6.00	490.38
BHA-2	496.61	486.61	6.00	490.61
BHA-3	492.79	482.79	5.00	487.79
BHA-4	498.52	488.52	7.60	490.92
BHA-5	490.26	480.26	4.50	485.76

Table 3-1 - Ground Water Level Observation during Field Investigation

3.6. Field Permeability Test

Five (5) field permeability tests were carried out at different depths in the overburden soils. This yielded preliminary information about the order of magnitude and variability of the coefficient of permeability. The method of falling of variable head is more appropriate for clays. Therefore, Constant Head method was adopted for these tests as most of the test horizons were encountering sandy soils. The tests were carried out as per BS 5930, BS 1377 P5 and ASTM D2434-68 (1994). In all the cases, the boreholes were cased from the ground surface to the top of the soil column to be tested. The borehole drilled and was washed with clean water in order to clear the test zone. In this test, the head of water was maintained, and the volume of flow was measured as a function of time. The results of these tests are as follows:

Borehole No. Depth		Material Coefficient of Permeability (cm/sec)		
BH-01	5	Fine Sand	3.45E-04	
BH-02	8	Fine Sand	3.81E-04	
BH-03	3	Fine Sand	1.22E-04	
BH-04	4	Fine Sand	7.15E-05	
BH-05	8	Fine Sand	3.12E-04	

4. Laboratory Test Results

In addition to field testing, a number of laboratory tests, as listed in Table 1-2, were also conducted on selected soil samples. Results of these tests are helpful in classification of soil, determining engineering properties such as classification, compactness and suitability for construction material; the same is given in the Annexure B.2.1, which contains laboratory test results.

Brief description of all the laboratory tests and testing standards is given in the following sections.

4.1. Grain Size Analysis

Soil is an uncemented aggregate of mineral grains and decayed matter with liquid and gas in the empty spaces between the solid particles, which consists of an assemblage of discrete of particles of various sizes and shapes. This analysis consists of shaking the soil sample through a set of sieves, which decrease in opening sizes from top to bottom. The object is to group these particles into separate size ranges and to determine the relative proportions by dry weight, of each size range.

Grain size analysis is been conducted in two stages. Particles size distribution of coarse-grained soils is performed by sieve analysis while hydrometer analysis is conducted to establish distribution of fine-grained soils. Grain size analysis is carried out as per ASTM D422-63(07).

Based on the results of these analyses and the Atterberg limits, the soil is classified into groups and sub-groups according to their engineering behaviour. Generally two elaborate classification systems are used which are the American Association of State Highway and Transportation Officials (AASHTO) classification system and the Unified Soil Classification System (USCS). The AASHTO classification system (AASHTO M145 or ASTM D3282-09) is used mostly by highway departments for road design, whereas the USCS system (ASTM D2487-11) is used by geotechnical engineers for foundation design etc.

A total of one hundred twenty three (123) sieve analyses were conducted on the samples collected from the site.

The classification test results indicate that the subsoil mostly comprises of CL, ML, SM, SP-SM/SW-SM groups on the basis of USCS System. The soils classified as granular indicated fines (passing # 200 sieve) ranging from 1% to 32%. The fine content in the cohesive soils were indicated as 80% to 98%.

4.2. Hydrometer Analysis

Hydrometer analysis is the process by which fine-grained soils, silts and clays, are graded. It is performed if the grain sizes are too small for sieve analysis. The basis for this test is Stoke's Law for falling spheres in a viscous fluid in which the terminal velocity of fall depends on the grain diameter and the densities of the grain in suspension and of the fluid.

The soil sample is mixed in water, along with a dispersing agent to separate individual soil particles. The density of the soil suspension is determined with a hydrometer calibrated to read in grams of solids per litre after the sand settles out and again after the silt settles. Corrections are made for the density and temperature of the dispersing solution, as defined in ASTM D422-63(07).

A total of two (2) hydrometer tests performed on the soil samples indicated that the percent passing from a 0.02mm size ranged from 24% to 48% and percent passing from a 0.002mm size varied from 6% to 22%.

4.3. Atterberg Limits

Atterberg limits, as described in ASTM D4318-00, are a basic measure of the critical water contents of a finegrained soil, such as its shrinkage limit, plastic limit, and liquid limit. As a dry, clayey soil takes on increasing amounts of water, it undergoes dramatic and distinct changes in behaviour and consistency. Depending on the water content of the soil, it may appear in four states: solid, semi-solid, plastic and liquid. In each state, the consistency and behaviour of a soil is different and consequently so are its engineering properties.

Plastic limit (PL) is the moisture content at which the soil passes from the semisolid to the plastic state, as the moisture content is increased. It is determined by rolling out a thread of the fine portion of a soil on a flat, non-porous surface.

Liquid Limit (LL) is the moisture content at which a soil passes from the plastic state to a liquid state as the water content is increased.

Plasticity Index (PI) is the difference of moisture content at liquid and plastic limits (PI=LL-PL). A plot of Pi against LL provides the bases for classification of cohesive soils. It also provides insight into several soil characteristics such as compressibility and strength.

A total of five (5) Atterberg limit tests performed on the soil samples indicated that the liquid limit (LL) ranged from 30 to 31and plasticity index (PI) varied from 10 to 11, while three (3) samples showed a non-plastic (NP) behaviour.

4.4. Natural Moisture Content

Moisture content of soil is the ratio of the amount of water present in a soil sample to the solid mass of the soil. The knowledge of the in situ natural moisture content will give an idea of the state of soil in the field. It is essential in in establishing a correlation between soil behaviour and its index properties and determining the bearing capacity and settlement. The standard procedure is given in ASTM D2216-10.

The laboratory tests performed on four (4) relatively undisturbed soil samples extracted up to a maximum depth of 6m below NSL have yielded natural moisture content ranging from 16% to 31%.

4.5. Direct Shear Test

Direct shear test, according to ASTM D3080-11, is a laboratory to measure the shear strength properties of soil. It is performed on three or four specimens from a relatively undisturbed soil sample. A specimen is placed in a shear box which has two stacked rings to hold the sample; the contact between the two rings is at approximately the mid-height of the sample. A confining stress is applied vertically to the specimen, and the upper ring is pulled laterally until the sample fails, or through a specified strain. The load applied and the strain induced is recorded at frequent intervals to determine a stress-strain curve for each confining stress. This test is commonly used for dry or saturated sandy soils.

A total of four (4) direct shear tests were performed on the relatively undisturbed granular soil samples extracted from undisturbed soil samples extracted from boreholes using pitcher sampler. The results indicated

angles of internal friction (Ø) varying from 33° to 37° with the corresponding cohesion intercept of zero.

4.6. Unconfined Compressive Strength

The objective of the unconfined compression test is to determine the unconsolidated un-drained strength of a cohesive soil in an inexpensive manner. Fine-grained soils are usually tested in compression. Undisturbed specimens are cut from tube samples and disturbed specimens are loaded in compression, recording load and deflection measurements. The unconfined test uses axial loading without lateral confining pressures, making it the simplest and relatively quickest laboratory method of estimating strength of soil. Standard Procedure is given in ASTM D2166-13.

The project site area has a very thin cover of cohesive material in the upper 1 m only, therefore, no undisturbed soil sample was extracted from the cohesive material. Therefore, the unconfined compression test was not performed.

4.7. Oedometer Test (OED)

An oedometer test is a kind of geotechnical investigation performed in geotechnical engineering that measures a soil's consolidation properties. Oedometer tests, as described in ASTM D2435-11, are performed by applying different loads to a soil sample and measuring the deformation response. The results from these tests are used to predict how a soil in the field will deform in response to a change in effective stress.

Oedometer tests are designed to simulate the one-dimensional consolidation and drainage conditions that soils experience in the field. To simulate these conditions, rigid confining rings are used to prevent lateral displacement of the soil sample.

The project site area has a very thin cover of cohesive material in the upper 1 m only, therefore, no undisturbed soil sample was extracted from the cohesive material. Therefore, the unconfined compression test was not performed.

4.8. Chemical Tests

The chemical tests are performed, as per BS 1377 Part 3, to check the acidity of the soil and the quantities of aggressive materials in the ground, such as Sulphates, Chlorides and Organic materials which may attack buried concrete or metal.

Chemical tests carried out on two (2) water samples indicated that total soluble solids varied as 355 to 460ppm and chloride contents from 67 to 98ppm.

5. Ground Conditions and Engineering Properties

5.1. Lithology of Project Area

The top surface comprises vegetative cover which is underlain by Lean Clay/Silt (Soft to firm), up to 1 m depth, the material is underlain by Silty Sand (Medium Dense to Dense) up to a maximum investigated depth of 30 m depth below NSL

5.2. Ground Conditions

The ground conditions consist of the following general conditions summarized below in Table 5-1

Borehole No.	Top Depth (m)	Bottom Depth (m)	Description Title	Description
1	0	1	1	SILT
1	1	4	3	SILTY SAND
1	4	10.11	6.10	FINE SAND
1	10.11	20.21	10.10	FINE SAND
1	20.21	30	9.8	FINE SAND
2	0	1	1	SILT
2	1	2	1	SILTY SAND
2	2	10.10	8.10	FINE SAND
2	10.10	20.21	10.10	FINE SAND
2	20.20	30	9.78	FINE SAND
3	0	1	1	SILT
3	1	2.5	1.5	SILTY SAND
3	2.5	10.10	7.6	FINE SAND
3	10.11	20.22	10.11	FINE SAND
3	20.22	30	9.78	FINE SAND
4	0	1	1	SILT
4	1	2	1	SILTY SAND

Table 5-1: Summary of Ground Conditions

Borehole No.	Top Depth (m)	Bottom Depth (m)	Description Title	Description
4	2	10.11	8.11	FINE SAND
4	10.11	20.22	10.11	FINE SAND
4	20.22	30	9.78	FINE SAND

5.3. Groundwater Table

Groundwater was encountered at a depth of about 6 m in the boreholes drilled up to a maximum depth of 30 m below NSL. However, seasonal variation can result into increase of groundwater table, in the upper layer of soil

5.4. Geotechnical Design Parameters

5.4.1. Summary of Design Parameters

Table 5-2 summarizes the recommended layer thicknesses used in parameters selection and design recommendation evaluated.

Material Type	Depth below NSL D (m)	Bulk Density (g/cm³)	Coefficient of Volume Compressibility (m _v)cm²/kg	Angle of Internal Friction Phi (°)	Cohesion C (kg/cm²)	Young's Modulus E (MPa)
Lean Clay/Silt	0.0-3.0	1.65	0.012	-	0.35	1.0
Silty Sand/Fine Sand	3.0- 30.0	1.75	-	32.00	-	7.5

Table 5-2: Summary of Design Parameters

5.4.2. Discussion on Design Parameters

The design parameters have been evaluated considering results of field geotechnical investigation, laboratory testing, experience, and judgment of author of this report in the similar ground. The ground condition reveals mostly Cohesive (silt/Lean Clay) at the foundation laying depth of about 1.5m below NSL.

5.4.3. Geotechnical Design Criteria

The foundations of all the structures should meet the following design criteria:

These should be safe against shear failure of the supporting ground. A factor of safety of 3 is adopted for this purpose.

- These should not settle excessively under the service loads. A limit of 25mm has been put on the total settlement of individual foundations. Similarly, the angular distortion between the two adjacent foundations should not exceed1/500.
- The bedding of pipelines should be rigid enough to remain stable. This should be attained by compacting the pipe bedding to at least 95% Modified Proctor Compaction (70% Relative density).
- If mat foundation is adopted, it should not settle beyond limits under the service loads. A limit of 50 mm has been put on the total settlement of foundations (corresponds to adifferential settlement of about 35 mm between the centre and edge of the mat foundation).

6. Engineering Considerations

6.1. Earthworks

6.1.1. Ground Preparation

The topsoil at site mostly belongs to vegetative material. Initial site preparation will require removal of such contaminated/vegetative topsoil. Such soil may be used in the landscaping.

6.2. Foundations

6.2.1. Proposed Structures

The proposed structures are expected to be low level loading as they will mostly comprise administration buildings etc. Usually this kind of buildings can be supported on shallow foundation. Considering the ground conditions, it is recommended to support these buildings on strip foundation with after recommended ground improvement in case any weak pocket observed during construction at site.

6.2.2. Design of Shallow Foundations

The evaluation of the bearing capacity of the Square/Rectangular Foundation has been done using approach given by Terzaghi, Elastic theory and other established correlations. The analysis has been carried out for a depth of foundation 1.5 m below NSL. The bearing capacity curves are presented in Annexure B.3.1.

Similarly, the evaluation of the bearing capacity of the Strip Foundation has been done. The analysis has been carried out for a depth of foundation 1.5 m below NSL. The bearing capacity curves are presented as Annexure.

6.2.3. Modulus of Subgrade Reaction

Modulus of sub-grade reaction K_s can be evaluated using the evaluated allowable bearing pressure, respective structural pressure, and factor of safety (FOS). The expression for its calculation is given below:

For Strip and Square Footings with 25.4mm (1 inch) tolerable settlement

 $K_{s} = \frac{EvaluatedNetAllowableBearingPressure}{Settlement (25.4mm) undermaximum structural pressure} \times Factor of Safety$

For Raft / Mat Footings with 50.8 mm (2 inch) tolerable settlement

 $\textit{K}_{s} = \frac{\textit{EvaluatedNetAllowableBearingPressure}}{\textit{Settlement}(50.8 \ \textit{mm}) undermaximumstructuralpressure}} \times \textit{FactorofSafety}$

6.2.4. Placement of Granular Fill

If any soft and loose material encountered, at foundation excavation level, during construction, then it should be further excavated and replaced with suitable granular material in proper compaction.

The availability of the sound ground must be confirmed before placement of the foundation pad. An experienced engineer should confirm the soundness of the excavation base as the upper soil is weak.

The excavated surface must be proof compacted to at least 95% of the Modified AASHTO Dry Density before placement of foundation or pavement.

The suitable granular material, if used, should comprise granular material, free draining, well graded, nonplastic and having particle size in a range of 0.075 mm to maximum 75 mm. The maximum content of fines should be limit to 10%. The minimum compaction requirement for granular back fill or proof rolling below foundation base should be at least 95% Modified AASHTO dry density or 75 % Relative Density.

6.3. Lateral Earth Pressure

6.3.1. Static Earth Pressure Coefficients

In case of buried structures and retaining walls, use of cohesion-less backfill is recommended. The evaluation of static earth pressure on buried wall / retaining walls depends upon the movement allowed for in the design, configuration of the wall, backfill geometry and the type of soil used as backfill. For smooth vertical walls with horizontal backfill, the following simplified expressions can be used for determination of coefficients of Lateral Earth Pressure.

Coefficient of Active Earth Pressure

$$K_{\alpha} = \frac{(1 - Sin\,\emptyset')}{(1 + Sin\,\emptyset')}$$

Coefficient of Earth Pressure at Rest

$$K_0 = (1 - Sin \ \emptyset')$$

Coefficient of Passive Earth Pressure

$$K_p = \frac{(1 + Sin\emptyset')}{(1 - Sin\emptyset')}$$

Where \emptyset' is effective Angle of Internal Friction of backfill soil.

The effective Angle of Friction of typical granular soils available in Punjab may be used as 30 degree.

6.3.2. Dynamic Earth Pressure Coefficients

For evaluation of earth pressure under earthquake conditions, the equations proposed by Mononobe-Okabe may be used.

6.4. Construction of Roads & Embankments

6.4.1. Formation of Subgrade and Embankment

Subgrade consisting of Silty Sand / Sandy Silt usually belongs to A4 material is found at site as per geotechnical investigation and visually inspected at site during site reconnaissance. However, there is presence of A-6 soil at surface as well. Therefore, it must be noted that only A-4 soils should be used for subgrade and embankment construction.

It is recommended to adopt an average design CBR of existing subgrade as 7, which is inline the above the minimum CBR value requirements of the subgrade material as per NHA Specifications.

6.4.2. Borrow Placement and Compaction

Before placement of the Earth fill/borrow fill, in-situ soil should be proof-rolled to achieve a minimum compaction level of 90% Modified AASHTO density.

The following maximum layer thickness, minimum compaction is recommended for various elements of embankment:

Table 6-1: Borrow Compaction Parameters

Material Type	Material Type	Maximum Compacted Layer Thickness (cm)	Recommended Modified AASHTO Compaction (%)
(a). A-4 as Embankment & Subgrade			
Top 30cm	A-4	15	95
30cm – 75cm	A-4	20	93
Below 75cm	A-4	20	90

6.5. Constraints and Risks

6.5.1. Damp Proofing and Surface Drainage

Principle constraints include following:

- Proper paving should be provided along the periphery of the Structure.
- All the backfilling of the foundation above concrete pad should be done with non swell cohesive material to avoid seepage of water in the foundation base. Alternatively, the top 30cm of any backfilling should be carried out with non-swelling cohesive soil.
- Adequate water proofing/damp proofing shall be provided for the structure. To avoid problem regarding moisture, it is recommended to adopt water-reducing admixtures in concrete.
- Cementitious coatings should also be provided to avoid moisture movement through the concrete.

6.5.2. Contaminated Land

The spillage of fuels, oils or other contaminants on the site should be prohibited and servicing of tools, plants, and machinery during the construction period should be managed to prevent pollution, while large numbers of machines are operating on the site.

6.5.3. Quality Control

The following precautions must be ensured for better quality control at site for construction stage:

- The water cement ratio of the concrete should be monitored properly for better quality of concrete.
- The compaction works should be supervised by experienced geotechnical engineer. The compaction of the area under foundation and other major load bearing locations should be certified by a licensed professional engineer for its laying as per specifications.

6.6. Design and Construction Aspects of Land Fill

6.6.1. Formation of Temporary and Final Cover

Soil or similar inert material should be used for the lifetime of the land fill site, to cover the waste on a regular basis. Extra thickness of "final cover" material shall also be required once the site has reached completion.

The simple spreading of daily cover is very effective way to reduce the attraction of waste to birds, suppress odours, prevent fly infestations, discourage rats and other animals, to reduce exposure to atmosphere conditions and to reduce wind blow litter.

Ideally, cover material should be taken from within the site, increasing the available space for waste disposal and reducing the need to bring material from elsewhere.

The material excavated from the site should be adequate for use a temporary and final cover material. Final confirmation should be made on remoulded permeability of the representative samples taken from the borrow source if adopted. At this time we expect that the soil removed during excavation will be used.

The soil should be compacted to at least 95 percent of the modified proctor density within a moisture content range of 0 to 3 percent wet of optimum.

6.6.2. Excavation at Site

The excavation required for the construction of foundation up to a shallow depth of about 3m, can be made without provision of any supporting system. The provision of dewatering must be kept in the scope of work of construction due to possibility of rainy season, during construction.

The excavation for the land fill area can be easily done with simple mechanical means, which is being practice currently at site. Since the adjacent areas are being used for agriculture purpose therefore, no major stability issues are anticipated to results in to property loss, however, it is recommended to excavate at a slope angle established by hit and trial method at site for an excavation of about 6 m, which is foreseen in the light of current ground conditions.

As a broad guideline it is suggested to adopt a slope angle of 2H:1V, however, based on hit and trial method adopted at site, the angle can be further steepened.

The base of the land fill site should be design for a permeability of existing base soil in a range of 3.12 to 3.18x10⁻⁴. For sealing of the base of the land fill site, a clay liner may be adopted, for which suitable soils would be high plastic clays, locally the areas near sambrial/Sialkot, material of high plasticity index (PI above 15 is usually available, which may be used blended with additives to improve the permeability values. Alternatively, geotextile based clay liner may be adopted.

6.6.3. Liquefaction Potential

Liquefaction is a loss of the shear strength of a soil that occurs when the ground experiences strong ground shaking. The phenomenon may result in large total and/or differential settlement beneath Structures founded on the liquefying soils. In order for the potential effects of liquefaction to be manifested at the ground surface, the soils generally have to be granular, loose to moderately dense, saturated relatively near the ground surface, and must be subjected to a sufficient magnitude and duration of shaking.

According to the grading plans for the proposed Landfill Site, surficial soils will be removed so that the proposed filling will be directly underlain by medium dense to dense Sands. With the removal of upper alluvium, the nearest groundwater will be on the order of 1 to 2m below the base of the landfill. Due to the lack of a week sandy soil, the relatively low design site acceleration being in zone 2A, and the competency of the Sands at about 6 m depth, the potential for significant, large-scale liquefaction effects and associated dynamic settlement to cause damage to the composite liner system and other site facilities is very low.

6.6.4. Cement Type

It is recommended to use Ordinary Portland Cement as per results of chemical tests performed at soil and water samples from site.

7. Conclusions

In summary it is concluded that

- The top surface comprises vegetative cover which is underlain by Lean Clay/Silt (Soft to firm), up to 1 m depth, the material is underlain by Silty Sand (Medium Dense to Dense) up to a maximum investigated depth of 30 m depth below NSL
- Groundwater was encountered at a depth of about 6 m in the boreholes drilled up to a maximum depth of 30 m below NSL. However, seasonal variation can result into increase of groundwater table, in the upper layer of soil
- The bearing capacity curves are provided in the Annexure B.3
- The evaluation of the bearing capacity of the Square/Rectangular Foundation has been done using approach given by Terzaghi, Elastic theory and other established correlations. The analysis has been carried out for a depth of foundation 1.5 m below NSL.
- Similarly, the evaluation of the bearing capacity of the Strip Foundation has been done. The analysis has been carried out for a depth of foundation 1.5 m below NSL.
- Proper paving should be provided along the periphery of the Structure.
- All the backfilling of the foundation above concrete pad should be done with non swell cohesive material to avoid seepage of water in the foundation base. Alternatively, the top 30cm of any backfilling should be carried out with non-swelling cohesive soil.
- Adequate water proofing/damp proofing shall be provided for the structure. To avoid problem regarding moisture, it is recommended to adopt water-reducing admixtures in concrete.
- If any soft and loose material encountered, at foundation excavation level, during construction, then it should be further excavated and replaced with suitable granular material in proper compaction.
- Cementitious coatings should also be provided to avoid moisture movement through the concrete.
- "The base of the land fill site should be design for a permeability of existing base soil in a range of 3.12 to 3.18x10⁻⁴. For sealing of the base of the land fill site, a clay liner may be adopted, for which suitable soils would be high plastic clays, locally the areas near sambrial/Sialkot, material of high plasticity index (PI above 15 is usually available, which may be used blended with additives to improve the permeability values. Alternatively, geotextile based clay liner may be adopted."

8. References

Following References and specialized Software have been utilized in the development of this report:

- Foundation Analysis and Design by Joseph E. Bowles
- Winlog & Winfence (softwares for generation of graphical borehole logs and subsurface profiles)
- NovoSPT a software from Novotech (for assessment and correlation of standard penetration resistance data for analysis and design)
- Building Code of Pakistan as given on Pakistan Engineering Council Website
- ASTM Book volume 4.08 (Soils and Rocks)
- Geotechnical Earthquake Engineering by Kramer

Annexure A. Drawings

A.1. Site Location Map

A.2. Geotechnical Investigation Plan

A.3. Geological Map of the Project Area

A.4. Seismic Map of Punjab

Annexure B. Figures

B.1. Variation of SPT Blows with Depth

B.2. Summary of Laboratory Test Results

B.2.1. Laboratory Classification Testing

Project Name: Geotechnical Investigation for Landfill Site in Gujranwala

Client Name: Urban Unit, Lahore

Sample with "*" are classed on the basis of Atterberg limit test of the similar or adjacent sample.

% Sr. No. Borehole/Testpit Sample Depth % Passing LL PL PI % Sand % Gravel SOIL CLASSIFICATION SOIL (m) Silt/clay **AS PER USCS** CLASSIFICATION No. No. #4 #10 #40 #200 **REFERENCE ASTM** AS PER AASHTO D2487 100 20 11 Lean Clay (A-6) Clayey Soils 1 BH-1 SPT-1 1.00 100 98 80 31 80 20 (CL) _ with Sand (A-2-4) Silty and 2 100 100 97 32 68 Silty Sand BH-1 SPT-2 2.00 32 (SM) _ _ **Clayey Gravel and** Sand BH-1 SPT-3 3.00 100 100 22 22 48 (A-2-4) Silty and 3 100 (SM) Silty Sand _ **Clayey Gravel and** Sand BH-1 100 (SW) Well Graded (A-2-4) Silty and SPT-4 4.00 100 90 3 3 97 4 _ -_ _ Sand **Clayey Gravel and** Sand

Annexure B.2.1 Sheet 1 of 18

Contractor: Lean & Green (Pvt.) Ltd.

5	BH-1	SPT-5	5.00	100	100	92	2	-	-	-	2	98	-	(SW)	Well Graded	(A-2-4) Silty and
															Sand	Clayey Gravel and
																Sand
6	BH-1	SPT-6	6.00	100	100	90	1	-	-	-	1	99	-	(SW)	Well Graded	(A-2-4) Silty and
															Sand	Clayey Gravel and
																Sand
7	BH-1	SPT-7	7.00	100	100	90	1	-	-	-	1	99	-	(SW)	Well Graded	(A-2-4) Silty and
															Sand	Clayey Gravel and
																Sand

Project Name: Geotechnical Investigation for Landfill Site in Gujranwala

Client Name: Urban Unit, Lahore

Sample with "*" are classed on the basis of Atterberg limit test of the similar or adjacent sample.

					% Pa	assing									SOIL	
Sr. No.	Borehole/Testpit No.	Sample No.	Depth (m)	#4	#10	#40	#200	LL	PL	PI	% Silt/clay	% Sand	% Gravel	CLASSI P REFEF	FICATION AS ER USCS ENCE ASTM D2487	SOIL CLASSIFICATION AS PER AASHTO
																(A-2-4) Silty and
															Well Graded	Clayey Gravel and
8	BH-1	SPT-8	8.00	100	100	90	1	-	-	-	1	99	-	(SW)	Sand	Sand
																(A-2-4) Silty and
															Well Graded	Clayey Gravel and
9	BH-1	SPT-9	9.00	100	100	92	1	-	-	-	1	99	-	(SW)	Sand	Sand
																(A-2-4) Silty and
															Well Graded	Clayey Gravel and
10	BH-1	SPT-10	10.00	100	100	100	-	-	-	-	-	100	-	(SW)	Sand	Sand
																(A-2-4) Silty and
															Well Graded	Clayey Gravel and
11	BH-1	SPT-11	11.00	100	100	95	1	-	-	-	1	99	-	(SW)	Sand	Sand

Annexure B.2.1 Sheet 2 of 18

Contractor: Lean & Green (Pvt.) Ltd.

12	BH-1	SPT-12	12.00	100	100	90	1	-	-	_	1	99	-	(SW)	Well Graded Sand	(A-2-4) Silty and Clayey Gravel and Sand
																(A-2-4) Silty and
															Well Graded	Clayey Gravel and
13	BH-1	SPT-13	13.00	100	100	88	1	-	-	-	1	99	-	(SW)	Sand	Sand
																(A-2-4) Silty and
															Well Graded	Clayey Gravel and
14	BH-1	SPT-14	14.00	100	100	87	1	-	-	-	1	99	-	(SW)	Sand	Sand

Project Name: Geotechnical Investigation for Landfill Site in Gujranwala

Client Name: Urban Unit, Lahore

Sample with "*" are classed on the basis of Atterberg limit test of the similar or adjacent sample.

					% Pa	assing									SOIL	
Sr. No.	Borehole/Testpit No.	Sample No.	Depth (m)					ш	PL	PI	% Silt/clay	% Sand	% Gravel	CLASSI P REFEF	FICATION AS ER USCS RENCE ASTM	SOIL CLASSIFICATION AS PER AASHTO
				#4	#10	#40	#200								D2487	
															Well	(A-2-4) Silty and
															Graded	Clayey Gravel and
5	BH-1	SPT-15	15.00	100	100	90	1	-	-	-	1	99	-	(SW)	Sand	Sand
															Well	(A-2-4) Silty and
															Graded	Clayey Gravel and
16	BH-1	SPT-16	16.00	100	100	90	1	-	-	-	1	99	-	(SW)	Sand	Sand
															Well	(A-2-4) Silty and
															Graded	Clayey Gravel and
19	BH-1	SPT-17	17.00	100	100	89	1	-	-	-	1	99	-	(SW)	Sand	Sand
															Well	(A-2-4) Silty and
															Graded	Clayey Gravel and
21	BH-1	SPT-18	18.00	100	100	88	1	-	-	-	1	99	-	(SW)	Sand	Sand
															Well	(A-2-4) Silty and
															Graded	Clayey Gravel and
22	BH-1	SPT-19	19.00	100	100	85	1	-	-	-	1	99	-	(SW)	Sand	Sand

Annexure B.2.1 Sheet 3 of 18

Contractor: Lean & Green (Pvt.) Ltd.

															Well Graded	(A-2-4) Silty and Clayey Gravel and
23	BH-1	SPT-20	20.00	100	100	90	1	-	-	-	1	99	-	(SW)	Sand	Sand
															Well	(A-2-4) Silty and
															Graded	Clayey Gravel and
24	BH-1	SPT-21	21.00	100	100	95	1	-	-	-	1	99	-	(SW)	Sand	Sand

Project Name: Geotechnical Investigation for Landfill Site in Gujranwala

Client Name: Urban Unit, Lahore

Sample with "*" are classed on the basis of Atterberg limit test of the similar or adjacent sample.

					% Pa	assing									SOIL	
Sr. No.	Borehole/Testpit No.	Sample No.	Depth (m)					ш	PL	PI	% Silt/clay	% Sand	% Gravel	CLASSI PE	FICATION AS ER USCS	SOIL CLASSIFICATION AS
				#4	#10	#40	#200							KEFEK	D2487	PER AASHTU
															Well	(A-2-4) Silty and
															Graded	Clayey Gravel and
25	BH-1	SPT-22	22.00	100	100	92	1	-	-	-	1	99	-	(SW)	Sand	Sand
															Well	(A-2-4) Silty and
															Graded	Clayey Gravel and
26	BH-1	SPT-23	23.00	100	100	93	1	-	-	-	1	99	-	(SW)	Sand	Sand
															Well	(A-2-4) Silty and
															Graded	Clayey Gravel and
27	BH-1	SPT-24	24.00	100	100	90	1	-	-	-	1	99	-	(SW)	Sand	Sand
															Well	(A-2-4) Silty and
															Graded	Clayey Gravel and
28	BH-1	SPT-25	25.00	100	100	88	1	-	-	-	1	99	-	(SW)	Sand	Sand
															Well	(A-2-4) Silty and
															Graded	Clayey Gravel and
29	BH-1	SPT-26	26.00	100	100	90	1	-	-	-	1	99	-	(SW)	Sand	Sand

Annexure B.2.1 Sheet 4 of 18

Contractor: Lean & Green (Pvt.) Ltd.

															Well	(A-2-4) Silty and
															Graded	Clayey Gravel and
30	BH-1	SPT-27	27.00	100	100	89	1	-	-	-	1	99	-	(SW)	Sand	Sand
															Well	(A-2-4) Silty and
															Graded	Clayey Gravel and
31	BH-1	SPT-28	28.00	100	100	94	1	-	-	-	1	99	-	(SW)	Sand	Sand

Project Name: Geotechnical Investigation for Landfill Site in Gujranwala

Client Name: Urban Unit, Lahore

Sample with "*" are classed on the basis of Atterberg limit test of the similar or adjacent sample.

					% Pa	assing								SOIL CLAS	SIFICATION	SOIL
Sr. No.	Borehole/Testpit No.	Sample No.	Depth (m)	#4	#10	#40	#200	LL	PL	PI	% Silt/clay	% Sand	% Gravel	AS PE REFEREN D2	R USCS ICE ASTM 487	CLASSIFICATION AS PER AASHTO
															Well	(A-2-4) Silty and
															Graded	Clayey Gravel and
32	BH-1	SPT-29	29.00	100	100	90	1	-	-	-	1	99	-	(SW)	Sand	Sand
															Well	
															Graded	(A-2-4) Silty and
															Sand with	Clayey Gravel and
33	BH-1	SPT-30	30.00	100	100	92	5	-	-	-	5	95	-	(SW-SM)	Silt	Sand
															Well	(A-2-4) Silty and
															Graded	Clayey Gravel and
34	BH-2	SPT-1	1.00	100	100	98	3	-	-	-	3	97	-	(SW)	Sand	Sand
															Well	(A-2-4) Silty and
															Graded	Clayey Gravel and
35	BH-2	SPT-2	2.00	100	100	95	1	-	-	-	1	99	-	(SW)	Sand	Sand
															Well	(A-2-4) Silty and
															Graded	Clayey Gravel and
36	BH-2	SPT-3	3.00	100	100	94	1	-	-	-	1	99	-	(SW)	Sand	Sand

Annexure B.2.1 Sheet 5 of 18

Contractor: Lean & Green (Pvt.) Ltd.

															Well	(A-2-4) Silty and
															Graded	Clayey Gravel and
37	BH-2	SPT-4	4.00	100	100	93	1	-	-	-	1	99	-	(SW)	Sand	Sand
															Well	(A-2-4) Silty and
															Graded	Clayey Gravel and
38	BH-2	SPT-5	5.00	100	100	90	1	-	-	-	1	99	-	(SW)	Sand	Sand

Project Name: Geotechnical Investigation for Landfill Site in Gujranwala

Client Name: Urban Unit, Lahore

Sample with "*" are classed on the basis of Atterberg limit test of the similar or adjacent sample.

% Passing SOIL CLASSIFICATION SOIL **Borehole/Testpit** Depth Sample % AS PER USCS ΡΙ Sr. No. LL PL % Sand % Gravel **CLASSIFICATION** (m) Silt/clay No. No. **REFERENCE ASTM AS PER AASHTO** #4 #10 #40 #200 D2487 (A-2-4) Silty and Well Graded **Clayey Gravel and** SPT-6 100 92 99 Sand 39 BH-2 6.00 100 1 _ -1 (SW) Sand Well Graded (A-1-b) Gravel and 40 BH-2 UDS-1 7.00 100 100 100 (SW) Sand Sand _ _ _ _ (A-2-4) Silty and **Clayey Gravel and** Well Graded 8.00 100 41 BH-2 SPT-8 100 90 1 -1 99 (SW) Sand Sand -(A-2-4) Silty and Well Graded Clayey Gravel and SPT-9 (SW) 42 BH-2 9.00 100 100 88 1 99 Sand 1 -Sand -(A-2-4) Silty and Well Graded Clayey Gravel and 85 43 BH-2 SPT-10 10.00 100 100 1 1 99 (SW) Sand Sand _ _ (A-2-4) Silty and Clayey Gravel and Well Graded SPT-11 11.00 100 100 90 2 2 98 (SW) 44 BH-2 Sand Sand

Annexure B.2.1 Sheet 6 of 18

Contractor: Lean & Green (Pvt.) Ltd.

																(A-2-4) Silty and
															Well Graded	Clayey Gravel and
45	BH-2	SPT-12	12.00	100	100	92	1	-	-	-	1	99	-	(SW)	Sand	Sand

Project Name: Geotechnical Investigation for Landfill Site in Gujranwala

Client Name: Urban Unit, Lahore

Sample with "*" are classed on the basis of Atterberg limit test of the similar or adjacent sample.

					<u>% Pa</u>	assing									SOIL	
Sr. No.	Borehole/Testpit No.	Sample No.	Depth (m)	#4	#10	#40	#200	ш	PL	PI	% Silt/clay	% Sand	% Gravel	CLASS P REFEF	IFICATION AS ER USCS RENCE ASTM D2487	SOIL CLASSIFICATION AS PER AASHTO
																(A-2-4) Silty and
															Well Graded	Clayey Gravel and
46	BH-2	SPT-13	13.00	100	100	88	1	-	-	-	1	99	-	(SW)	Sand	Sand
																(A-2-4) Silty and
															Well Graded	Clayey Gravel and
47	BH-2	SPT-14	14.00	100	100	90	1	-	-	-	1	99	-	(SW)	Sand	Sand
																(A-2-4) Silty and
															Well Graded	Clayey Gravel and
48	BH-2	SPT-15	15.00	100	100	87	1	-	-	-	1	99	-	(SW)	Sand	Sand
																(A-2-4) Silty and
															Well Graded	Clayey Gravel and
49	BH-2	SPT-16	16.00	100	100	85	1	-	-	-	1	99	-	(SW)	Sand	Sand
																(A-2-4) Silty and
															Well Graded	Clayey Gravel and
50	BH-2	SPT-17	17.00	100	100	88	1	-	-	-	1	99	-	(SW)	Sand	Sand

Annexure B.2.1 Sheet 7 of 18

Contractor: Lean & Green (Pvt.) Ltd.

																(A-2-4) Silty and
															Well Graded	Clayey Gravel and
51	BH-2	SPT-18	18.00	100	100	85	1	-	-	-	1	99	-	(SW)	Sand	Sand
																(A-2-4) Silty and
															Well Graded	Clayey Gravel and
52	BH-2	SPT-19	19.00	100	100	82	1	-	-	-	1	99	-	(SW)	Sand	Sand

Project Name: Geotechnical Investigation for Landfill Site in Gujranwala

Client Name: Urban Unit, Lahore

Sample with "*" are classed on the basis of Atterberg limit test of the similar or adjacent sample.

					% Pa	assing									SOIL	
Sr. No.	Borehole/Testpit No.	Sample No.	Depth (m)	#4	#10	#40	#200	ш	PL	PI	% Silt/clay	% Sand	% Gravel	CLASSI PE REFER	FICATION AS ER USCS ENCE ASTM D2487	SOIL CLASSIFICATION AS PER AASHTO
															Well	(A-2-4) Silty and
															Graded	Clayey Gravel and
53	BH-2	SPT-20	20.00	100	100	90	1	-	-	-	1	99	-	(SW)	Sand	Sand
															Well	(A-2-4) Silty and
															Graded	Clayey Gravel and
54	BH-2	SPT-21	21.00	100	100	93	1	-	-	-	1	99	-	(SW)	Sand	Sand
															Well	(A-2-4) Silty and
															Graded	Clayey Gravel and
55	BH-2	SPT-22	22.00	100	100	87	1	-	-	-	1	99	-	(SW)	Sand	Sand
															Well	(A-2-4) Silty and
															Graded	Clayey Gravel and
56	BH-2	SPT-23	23.00	100	100	90	1	-	-	-	1	99	-	(SW)	Sand	Sand
															Well	(A-2-4) Silty and
															Graded	Clayey Gravel and
57	BH-2	SPT-24	24.00	100	100	88	1	-	-	-	1	99	-	(SW)	Sand	Sand

Annexure B.2.1 Sheet 8 of 18

Contractor: Lean & Green (Pvt.) Ltd.

															Well	(A-2-4) Silty and
															Graded	Clayey Gravel and
58	BH-2	SPT-25	25.00	100	100	88	1	-	-	-	1	99	-	(SW)	Sand	Sand
															Well	(A-2-4) Silty and
															Graded	Clayey Gravel and
59	BH-2	SPT-26	26.00	100	100	90	1	-	-	-	1	99	-	(SW)	Sand	Sand

Project Name: Geotechnical Investigation for Landfill Site in Gujranwala

Client Name: Urban Unit, Lahore

Sample with "*" are classed on the basis of Atterberg limit test of the similar or adjacent sample.

					<u>% Pa</u>	assing									SOIL	
Sr. No.	Borehole/Testpit No.	Sample No.	Depth (m)					LL	PL	PI	% Silt/clay	% Sand	% Gravel	CLASSI PI REFER	FICATION AS ER USCS EENCE ASTM	SOIL CLASSIFICATION AS PER AASHTO
				#4	#10	#40	#200								D2487	
															Well	(A-2-4) Silty and
															Graded	Clayey Gravel and
60	BH-2	SPT-27	27.00	100	100	92	1	-	-	-	1	99	-	(SW)	Sand	Sand
															Well	(A-2-4) Silty and
															Graded	Clayey Gravel and
61	BH-2	SPT-28	28.00	100	100	90	1	-	-	-	1	99	-	(SW)	Sand	Sand
															Well	(A-2-4) Silty and
															Graded	Clayey Gravel and
62	BH-2	SPT-29	29.00	100	100	98	1	-	-	-	1	99	-	(SW)	Sand	Sand
															Well	(A-2-4) Silty and
															Graded	Clayey Gravel and
63	BH-2	SPT-30	30.00	100	100	88	1	-	-	-	1	99	-	(SW)	Sand	Sand
																(A-2-4) Silty and
																Clayey Gravel and
64	BH-3	SPT-1	1.00	100	100	97	13	-	-	-	13	87	-	(SM)	Silty Sand	Sand

Annexure B.2.1 Sheet 9 of 18

Contractor: Lean & Green (Pvt.) Ltd.

															Well	(A-2-4) Silty and
															Graded	Clayey Gravel and
65	BH-3	SPT-2	2.00	100	100	90	1	-	-	-	1	99	-	(SW)	Sand	Sand
															Well	(A-2-4) Silty and
															Graded	Clayey Gravel and
66	BH-3	SPT-3	3.00	100	100	88	1	-	-	-	1	99	-	(SW)	Sand	Sand

Project Name: Geotechnical Investigation for Landfill Site in Gujranwala

Client Name: Urban Unit, Lahore

Sample with "*" are classed on the basis of Atterberg limit test of the similar or adjacent sample.

% Passing SOIL CLASSIFICATION SOIL Borehole/Testpit Depth Sample % AS PER USCS ΡI Sr. No. LL PL % Sand % Gravel **CLASSIFICATION** (m) Silt/clay No. No. REFERENCE ASTM AS PER AASHTO #4 #10 #40 #200 D2487 (A-2-4) Silty and Clayey Gravel and Well Graded 99 67 SPT-4 4.00 100 100 95 (SW) BH-3 1 _ -1 Sand Sand _ (A-2-4) Silty and Clayey Gravel and Well Graded (SW) 68 BH-3 SPT-5 5.00 100 100 90 1 1 99 Sand Sand _ _ -_ Well Graded (A-1-b) Gravel and 100 69 BH-3 UDS-1 6.00 100 _ 100 (SW) Sand Sand ---(A-2-4) Silty and Well Graded **Clayey Gravel and** BH-3 SPT-7 7.00 100 100 92 1 99 (SW) Sand 70 1 -Sand -(A-2-4) Silty and Well Graded **Clayey Gravel and** 71 BH-3 SPT-8 8.00 100 100 88 1 1 99 (SW) Sand Sand -(A-2-4) Silty and Clayey Gravel and Well Graded SPT-9 72 9.00 100 100 90 99 (SW) BH-3 1 Sand Sand 1

Annexure B.2.1 Sheet 10 of 18

Contractor: Lean & Green (Pvt.) Ltd.

																(A-2-4) Silty and
															Well Graded	Clayey Gravel and
73	BH-3	SPT-10	10.00	100	100	93	1	-	-	-	1	99	-	(SW)	Sand	Sand

Project Name: Geotechnical Investigation for Landfill Site in Gujranwala

Client Name: Urban Unit, Lahore

Sample with "*" are classed on the basis of Atterberg limit test of the similar or adjacent sample.

					% Pa	assing									SOIL	
Sr. No.	Borehole/Testpit No.	Sample No.	Depth (m)	#4	#10	#40	#200	ш	PL	PI	% Silt/clay	% Sand	% Gravel	CLASS P REFEF	IFICATION AS ER USCS RENCE ASTM D2487	SOIL CLASSIFICATION AS PER AASHTO
																(A-2-4) Silty and
															Well Graded	Clayey Gravel and
74	BH-3	SPT-11	11.00	100	100	90	1	-	-	-	1	99	-	(SW)	Sand	Sand
																(A-2-4) Silty and
															Well Graded	Clayey Gravel and
75	BH-3	SPT-12	12.00	100	100	88	1	-	-	-	1	99	-	(SW)	Sand	Sand
																(A-2-4) Silty and
															Well Graded	Clayey Gravel and
76	BH-3	SPT-13	13.00	100	100	87	1	-	-	-	1	99	-	(SW)	Sand	Sand
																(A-2-4) Silty and
															Well Graded	Clayey Gravel and
77	BH-3	SPT-14	14.00	100	100	91	1	-	-	-	1	99	-	(SW)	Sand	Sand
																(A-2-4) Silty and
															Well Graded	Clayey Gravel and
78	BH-3	SPT-15	15.00	100	100	88	1	-	-	-	1	99	-	(SW)	Sand	Sand

Annexure B.2.1 Sheet 11 of 18

Contractor: Lean & Green (Pvt.) Ltd.

																(A-2-4) Silty and
															Well Graded	Clayey Gravel and
79	BH-3	SPT-16	16.00	100	100	85	1	-	-	-	1	99	-	(SW)	Sand	Sand
																(A-2-4) Silty and
															Well Graded	Clayey Gravel and
80	BH-3	SPT-17	17.00	100	100	83	1	-	-	-	1	99	-	(SW)	Sand	Sand

Project Name: Geotechnical Investigation for Landfill Site in Gujranwala

Client Name: Urban Unit, Lahore

Sample with "*" are classed on the basis of Atterberg limit test of the similar or adjacent sample.

SOIL % Passing **CLASSIFICATION** SOIL Borehole/Testpit Sample Depth % ΡL % Sand Sr. No. LL ΡΙ % Gravel AS PER USCS **CLASSIFICATION AS** No. (m) Silt/clay No. **REFERENCE ASTM** PER AASHTO #40 #4 #10 #200 D2487 (A-2-4) Silty and Well **Clayey Gravel and** Graded 81 BH-3 SPT-18 18.00 100 100 88 1 1 99 (SW) Sand Sand --_ (A-2-4) Silty and Well Clayey Gravel and Graded BH-3 19.00 100 Sand 82 SPT-19 100 90 1 1 99 (SW) Sand --_ (A-2-4) Silty and Well Clayey Gravel and Graded 83 BH-3 SPT-20 20.00 100 100 88 1 1 99 (SW) Sand Sand --_ (A-2-4) Silty and Well Clayey Gravel and Graded 84 BH-3 SPT-21 21.00 100 100 85 1 --1 99 (SW) Sand Sand _ _ (A-2-4) Silty and Well Clayey Gravel and Graded BH-3 SPT-22 22.00 100 100 99 85 90 1 1 (SW) Sand Sand

Annexure B.2.1 Sheet 12 of 18

Contractor: Lean & Green (Pvt.) Ltd.

															Well	(A-2-4) Silty and
															Graded	Clayey Gravel and
86	BH-3	SPT-23	23.00	100	100	87	1	-	-	-	1	99	-	(SW)	Sand	Sand
															Well	(A-2-4) Silty and
															Graded	Clayey Gravel and
87	BH-3	SPT-24	24.00	100	100	86	1	-	-	-	1	99	-	(SW)	Sand	Sand

Project Name: Geotechnical Investigation for Landfill Site in Gujranwala

Client Name: Urban Unit, Lahore

Sample with "*" are classed on the basis of Atterberg limit test of the similar or adjacent sample.

					<mark>% P</mark> a	assing								SOIL CL	ASSIFICATION	SOIL
Sr. No.	Borehole/Testpit No.	Sample No.	Depth (m)	#4	#10	#40	#200	LL	PL	PI	% Silt/clay	% Sand	% Gravel	AS REFEI	PER USCS RENCE ASTM D2487	CLASSIFICATION AS PER AASHTO
																(A-2-4) Silty and
															Well Graded	Clayey Gravel and
88	BH-3	SPT-25	25.00	100	100	85	1	-	-	-	1	99	-	(SW)	Sand	Sand
																(A-2-4) Silty and
															Well Graded	Clayey Gravel and
89	BH-3	SPT-26	26.00	100	100	90	1	-	-	-	1	99	-	(SW)	Sand	Sand
																(A-2-4) Silty and
															Well Graded	Clayey Gravel and
90	BH-3	SPT-27	27.00	100	100	88	1	-	-	-	1	99	-	(SW)	Sand	Sand
																(A-2-4) Silty and
															Well Graded	Clayey Gravel and
91	BH-3	SPT-28	28.00	100	100	87	1	-	-	-	1	99	-	(SW)	Sand	Sand
																(A-2-4) Silty and
															Well Graded	Clayey Gravel and
92	BH-3	SPT-29	29.00	100	100	90	1	-	-	-	1	99	-	(SW)	Sand	Sand

Annexure B.2.1 Sheet 13 of 18

Contractor: Lean & Green (Pvt.) Ltd.

1																(A-2-4) Silty and
															Well Graded	Clayey Gravel and
9	BH-3	SPT-30	30.00	100	100	85	1	-	-	-	1	99	-	(SW)	Sand	Sand
																(A-2-4) Silty and
															Well Graded	Clayey Gravel and
9	BH-4	SPT-1	1.00	100	100	90	3	-	-	-	3	97	-	(SW)	Sand	Sand

Project Name: Geotechnical Investigation for Landfill Site in Gujranwala

Client Name: Urban Unit, Lahore

Sample with "*" are classed on the basis of Atterberg limit test of the similar or adjacent sample.

% Passing SOIL CLASSIFICATION SOIL Borehole/Testpit Depth Sample % AS PER USCS ΡI Sr. No. LL PL % Sand % Gravel CLASSIFICATION (m) Silt/clay No. No. **REFERENCE ASTM AS PER AASHTO** #4 #10 #40 #200 D2487 (A-2-4) Silty and **Clayey Gravel and** Well Graded SPT-2 98 95 2.00 100 100 88 2 2 (SW) Sand BH-4 _ -Sand -(A-2-4) Silty and Well Graded **Clayey Gravel and** (SW) 96 BH-4 SPT-3 3.00 100 100 85 1 1 99 Sand Sand _ --(A-2-4) Silty and Clayey Gravel and Well Graded 4.00 100 (SW) SPT-4 100 82 99 Sand 97 BH-4 1 1 Sand _ ---(A-2-4) Silty and Well Graded **Clayey Gravel and** 98 SPT-5 100 80 99 Sand BH-4 5.00 100 1 1 (SW) Sand -_ -_ (A-2-4) Silty and **Clayey Gravel and** Well Graded SPT-6 6.00 100 99 BH-4 100 85 99 (SW) Sand Sand 1 1

Annexure B.2.1 Sheet 14 of 18

Contractor: Lean & Green (Pvt.) Ltd.

																(A-2-4) Silty and
															Well Graded	Clayey Gravel and
100	BH-4	SPT-7	7.00	100	100	82	1	-	-	-	1	99	-	(SW)	Sand	Sand
																(A-2-4) Silty and
															Well Graded	Clayey Gravel and
101	BH-4	SPT-8	8.00	100	100	85	1	-	-	-	1	99	-	(SW)	Sand	Sand

Project Name: Geotechnical Investigation for Landfill Site in Gujranwala

Client Name: Urban Unit, Lahore

Sample with "*" are classed on the basis of Atterberg limit test of the similar or adjacent sample.

SOIL CLASSIFICATION % Passing SOIL **Borehole/Testpit** Sample Depth % AS PER USCS ΡΙ Sr. No. LL PL % Sand % Gravel **CLASSIFICATION AS** Silt/clay No. No. **REFERENCE ASTM** (m) PER AASHTO #4 #10 #40 #200 D2487 (A-2-4) Silty and **Clayey Gravel and** Well Graded SPT-9 99 102 9.00 100 100 90 BH-4 1 _ --1 (SW) Sand Sand (A-2-4) Silty and Well Graded **Clayey Gravel and** (SW) 103 BH-4 SPT-10 10.00 100 100 88 1 1 99 Sand Sand ---_ (A-2-4) Silty and Clayey Gravel and Well Graded 11.00 100 SPT-11 100 90 99 Sand Sand 104 BH-4 1 1 (SW) ----Well Graded (A-1-b) Gravel and UDS-1 100 100 100 Sand 105 BH-4 12.00 -(SW) Sand ----(A-2-4) Silty and Well Graded **Clayey Gravel and** 106 BH-4 SPT-13 13.00 100 100 88 1 1 99 (SW) Sand Sand -_ -_ (A-2-4) Silty and Clayey Gravel and Well Graded SPT-14 14.00 100 100 85 99 (SW) 107 BH-4 1 Sand Sand 1

Annexure B.2.1

Contractor: Lean & Green (Pvt.) Ltd.

Date: Monday, September 29, 2014

Sheet 15 of 18

																(A-2-4) Silty and
															Well Graded	Clayey Gravel and
108	BH-4	SPT-15	15.00	100	100	82	1	-	-	-	1	99	-	(SW)	Sand	Sand

Project Name: Geotechnical Investigation for Landfill Site in Gujranwala

Client Name: Urban Unit, Lahore

Sample with "*" are classed on the basis of Atterberg limit test of the similar or adjacent sample.

	Borehole/Testpit No.	Sample No.	Depth (m)	% Passing										SOIL CLASSIFICATION		SOII
Sr. No.				#4	#10	#40	#200	LL	PL	PI	% Silt/clay	% Sand	% Gravel	AS PER USCS REFERENCE ASTM D2487		CLASSIFICATION AS PER AASHTO
																(A-2-4) Silty and
															Well Graded	Clayey Gravel and
109	BH-4	SPT-16	16.00	100	100	85	1	-	-	-	1	99	-	(SW)	Sand	Sand
																(A-2-4) Silty and
															Well Graded	Clayey Gravel and
110	BH-4	SPT-17	17.00	100	100	80	1	-	-	-	1	99	-	(SW)	Sand	Sand
																(A-2-4) Silty and
															Well Graded	Clayey Gravel and
111	BH-4	SPT-18	18.00	100	100	88	1	-	-	-	1	99	-	(SW)	Sand	Sand
																(A-2-4) Silty and
															Well Graded	Clayey Gravel and
112	BH-4	SPT-19	19.00	100	100	90	1	-	-	-	1	99	-	(SW)	Sand	Sand
																(A-2-4) Silty and
															Well Graded	Clayey Gravel and
113	BH-4	SPT-20	20.00	100	100	89	1	-	-	-	1	99	-	(SW)	Sand	Sand

Annexure B.2.1 Sheet 16 of 18

Contractor: Lean & Green (Pvt.) Ltd.

1																	(A-2-4) Silty and
																Well Graded	Clayey Gravel and
	114	BH-4	SPT-21	21.00	100	100	90	1	-	-	-	1	99	-	(SW)	Sand	Sand
																	(A-2-4) Silty and
																Well Graded	Clayey Gravel and
	115	BH-4	SPT-22	22.00	100	100	88	1	-	-	-	1	99	-	(SW)	Sand	Sand

Project Name: Geotechnical Investigation for Landfill Site in Gujranwala

Client Name: Urban Unit, Lahore

Sample with "*" are classed on the basis of Atterberg limit test of the similar or adjacent sample.

SOIL CLASSIFICATION % Passing SOIL **Borehole/Testpit** Sample Depth % AS PER USCS Sr. No. LL PL ΡΙ % Sand % Gravel **CLASSIFICATION** Silt/clay No. No. (m) **REFERENCE ASTM AS PER AASHTO** #4 #10 #40 #200 D2487 (A-2-4) Silty and **Clayey Gravel and** Well Graded 92 SPT-23 23.00 100 100 99 116 BH-4 1 --1 (SW) Sand Sand (A-2-4) Silty and Well Graded **Clayey Gravel and** (SW) 117 BH-4 SPT-24 24.00 100 100 87 1 -1 99 Sand Sand -_ _ (A-2-4) Silty and Clayey Gravel and Well Graded SPT-25 25.00 100 100 90 99 Sand 118 BH-4 1 _ 1 (SW) Sand ---(A-2-4) Silty and Well Graded **Clayey Gravel and** SPT-26 89 99 Sand 100 (SW) 119 BH-4 26.00 100 1 _ 1 Sand --_ (A-2-4) Silty and **Clayey Gravel and** Well Graded SPT-27 27.00 100 BH-4 100 90 99 (SW) Sand 120 1 1 Sand

Annexure B.2.1 Sheet 17 of 18

Contractor: Lean & Green (Pvt.) Ltd.

Date: Monday, September 29, 2014

SHTO SYSTEM
																(A-2-4) Silty and
															Well Graded	Clayey Gravel and
121	BH-4	SPT-28	28.00	100	100	88	1	-	-	-	1	99	-	(SW)	Sand	Sand
																(A-2-4) Silty and
															Well Graded	Clayey Gravel and
122	BH-4	SPT-29	29.00	100	100	87	1	-	-	-	1	99	-	(SW)	Sand	Sand

SOIL CLASSIFICATION BY ASTM D2487 AND AASHTO SYSTEM

Project Name: Geotechnical Investigation for Landfill Site in Gujranwala

Client Name: Urban Unit, Lahore

Sample with "*" are classed on the basis of Atterberg limit test of the similar or adjacent sample.

					% Pa	assing								SOIL CI	ASSIFICATION	SOII
Sr. No.	Borehole/Testpit No.	Sample No.	Depth (m)	#4	#10	#40	#200	LL	PL	PI	% Silt/clay	% Sand	% Gravel	AS REFE	PER USCS RENCE ASTM D2487	CLASSIFICATION AS PER AASHTO
															Well Graded	(A-2-4) Silty and Clayey Gravel and
123	BH-4	SPT-30	30.00	100	100	85	1	-	-	-	1	99	-	(SW)	Sand	Sand

Annexure B.2.1 Sheet 18 of 18

Contractor: Lean & Green (Pvt.) Ltd.

Date: Monday, September 29, 2014

SUMMARY OF CHEMICAL TEST RESULTS PERFORMED ON SOIL/WATER SAMPLES

Annexure B.2.3 Sheet 2 of 2

Project Name: Geotechnical Investigation for Landfill Site in Gujranwala

Client Name: Urban Unit, Lahore

Contractor: Lean & Green (Pvt.) Ltd.

Date: Monday, September 29, 2014

Sr. No.	Borehole/ Testpit No.	Sample No.	Depth (m)	Organic Matter Content (%)	Sulphate Contents (%)	Chloride Contents (%)	РН	TDS (PPM)
1	BH-1	WS	-	-	-	0.092	-	445.000
2	BH-2	WS	-	-	-	0.098	-	460.000
3	BH-3	WS	-	-	-	0.089	-	435.000
4	BH-4	WS	-	-	-	0.067	-	355.000

B.2.2. Summary of Strength Related Test Results

SUMMARY OF STRENGTH/SETTLEMENT RELATED TESTS RESULTS

Project Name: Geotechnical Investigation for Landfill Site in Gujranwala

Client Name: Urban Unit, Lahore

Contractor: Lean & Green (Pvt.) Ltd.

			Depth	Moist F	ure Density Results	Unconfirmed Comp	ression Test	Direct S	hear Test	Cor	solidation	
Sr. No.	Borehole No.	Sample No.	(m)	NMC	Dry Density	Compressive Strength	Failure Strain	С	ф	"cv"	initial void ratio "e₀"	Swell Pressure
				%	g/cc	kg/cm ²	(%)	kg/cm ²	(Degree)	cm²/sec	(%)	(%)
1	BH-1	UDS-1	10.00	31.36	1.45	-	-	-	33.50	-	-	-
2	BH-2	UDS-1	7.00	15.91	1.63	-	-	-	37.30	-	-	-
3	BH-3	UDS-1	6.00	20.91	1.63	-	-	-	35.70	-	-	-
4	BH-4	UDS-1	12.00	22.38	1.57	-	-	-	36.90	-	-	-

Annexure B.2.2 Sheet 1 of 2

Date: Monday, September 29, 2014

B.3. Allowable Bearing Capacity Curve

B.3.1. Square/Rectangular Foundation

Figure B.3.1

B.3.2. Strip Foundation

CALCULATIONS OF BEARING CAPACITY FOR LANDFILL SITE AT GUJRANWALA Figure B.3.2

Annexure C. Field Permeability Test Data

					Basic Test D	ita						
BOREHOLE N	0.	BH-01		TEST NO	. 1		LOCAT	ON Ba	akhriya	awali		
DEPTH OF TE	ST	5		CASING DIA(cm) 9	+	воттом	OF 5.	00			
<u>m)</u>		<u> </u>					CAS	NG				
NATER TABL	E(cm)	600		CASING ABOVI	30	METH	IOD OF T	EST Co	onstan	t Hea	d	
				NSL(cm)	+						11
YPE OF SOIL	•	Fine San		IESTED BY	Umair							
ļ,	Obser	vations					Calculati	ons				
Elapsed	Fl	ow	Head (c	for Const	tant Head T	est = k	$=\frac{q}{EH}$	_	3 /15 E	-04	emler	
Time	(Li	ter)	neau (c				rn _c	- 3	3.43 E	-04	cm/se	.C.
1.0	0.	396		for Varia	ble Head T	est = k	$=\frac{A}{FT}$	=	NA		cm/se	C
1.0	0.	396		k is the Perr	<i>log_e</i> neability of :	oil						
1.0	0.	396		q is the Rate	e of Flow							
1.0	0.	368		F is the inta	ke factor							
1.0	0.	368		H _c is the cor	nstant head							
2.0	0.	735		H ₁ is the var	iable head r	easured	at time t ₁	after	comm	encer	ment o	f test
2.0	0.	707		H ₂ is the var	iable head r	easured	at time t ₂	after	comm	encer	nent o	f test
2.0	0.	679		A is the cros	ss-sectional a	rea of cas	sing or sta	andpip	le as a	ppro	priate	
2.0	0.	679		T is the basi	c time factor							
2.0	0.	622		16.00 F	Plot showing D	scharge &	Flow vs Tir	ne Elap	sed			
5.0	1.	555		14.00 -								
5.0	1.	583		12.00 -							-	
5.0	1.	555		8.00 -			_					_
10.0	3.	195		₹ 6.00 30 4.00								
10.0	3.	054		2.00								_
10.0	3.	082		0.00	10	20 :	30 2	10	50	f	50	70
60.0	19	.368		COLOR COLOR			⊤ime (min)					

				E	Basic Test De	ita					
BOREHOLE N	0.	BH-02		TEST NO.	2	1	LOCATIO	N Bakhri	iyawali		
DEPTH OF TE	ST	8	CAS	SING DIA(cm)	9	+	BOTTOM C	F 8.00			
WATER TABL	E(cm)	600	CA	SING ABOVE	30	MET	HOD OF TES	T Consta	ant He	ad	
TYPE OF SOIL		Fine Sand		TESTED BY	Umair				1		
	Obser	vations			0		Calculation	s		1 1	<u> </u>
Elapsed Time	Fl (Li	ow ter) H	ead (cm)	for Const	ant Head T	est = k	$= \frac{q}{FH_c}$	= 3.81	. E-04	cm/se	c
1.0	0.	198		for Variai	ble Head To	est = k	$=\frac{A}{FT}$	= N	A	cm/se	c
1.0	0.	170		or k = $\frac{1}{F(t_s - t_s)}$ k is the Perm	$\frac{1}{t}$ log _e $\frac{H_1}{H_2}$ heability of S	oil					
1.0	0.	141		q is the Rate	of Flow						
1.0	0.	141		F is the intak	e factor						
1.0	0.	141		H _c is the con	stant head						
2.0	0.	339		H ₁ is the vari	able head n	easured	at time t ₁ a	fter com	mence	ment o	f test
2.0	0.	368		H_2 is the vari	able head n	easured	at time t_2 a	fter com	mence	ment o	ftest
2.0	0.	339		A is the cross	s-sectional a	rea of ca	sing or stan	dpiple as	s appro	opriate	
2.0	1.	696		T is the basic	time factor						
2.0	1.	979		PI 14.00 -	lot showing Di	scharge &	Flow vs Time	Elapsed			-
5.0	1.	555		12.00 -	\cap				1	-	_
5.0	1.	696		10.00 - 홑							-
5.0	1.	753		8.00	1						
10.0	4.	241		No 4.00							
10.0	3.	252		تت 2.00 -							_
10.0	3.	393		0.00	10	20	30 40	50		60	70
60.0	21	.404					Time (min)				

					E	Basic Test Do	ıta							
BOREHOLE N	0.	BH-03			TEST NO.	3	<u></u>	LOC	ATION	Bakhri	yawali			
DEPTH OF TE	ST	3		CAS	ING DIA(cm)	9	+	вотто	OM OF ASING	3.00				
WATER TABL	E(cm)	600		CA	SING ABOVE	30	MET	HODO	F TEST	Consta	nt He	ad		
TYPE OF SOIL		Fine Sa	nd		TESTED BY	Umair						1		
3	Obsen	vations						Calcul	ations				<u>.</u>	
Elapsed Time	Fl (Li	ow ter)	Head	l (cm)	for Const	ant Head T	est = k	$= \frac{q}{FH_c}$	=	1.22	E-04	cm/se	ec	
1.0	0.	113			for Varia	ble Head Te	sst = k	$=\frac{A}{FT}$	=	N	A	cm/se	ec	
1.0	1.0 0.113 1.0 0.113				or k = $\frac{A}{F(t_{z}-t_{z}-t_{z})}$ k is the Perm	$\frac{1}{t_1} \log_e \frac{H_1}{H_2}$ heability of S	oil							
1.0	1.0 0.113 1.0 0.113 1.0 0.141				q is the Rate	of Flow								
1.0	1.0 0.113 1.0 0.141 1.0 0.141				F is the intak	e factor								
1.0	1.0 0.113 1.0 0.141 1.0 0.141				H_{c} is the con	stant head								
2.0	1.0 0.113 1.0 0.141 1.0 0.141 2.0 0.311				H_1 is the vari	able head m	easured	at tim	e t ₁ aft	er comi	mence	ment o	of test	
2.0	0.	311			H_2 is the vari	able head m	easured	at tim	e t ₂ aft	er comi	mence	ment c	of test	
2.0	0.	311			A is the cros	s-sectional a	rea of ca	sing or	stand	piple as	appro	priate		
2.0	0.	339			T is the basic	time factor								
2.0	0.	311			6.00 T	lot showing Di	scharge &	Flow vs	: Time El	apsed			-	
5.0	0.	311			5.00 -	~						_	_	
5.0	0.	622			· 물 4.00							_	_	
5.0	0.	565			j∰ au 3.00 -								_	
10.0	1.	074			2.00 -				_				_	
10.0	1.	074			1.00 -				_	_			_	
10.0	1.	018			0.00	10	20	30	40	50		60	70	
60.0	6.	871				30.5		⊤ime (I	min)	1000				

					E	Basic Test D	Data						
30REHOLE N	0.	BH-04		[TEST NO.	4		LOCA	TION	Bakhri	yawali		
DEPTH OF TE	ST	4		CAS	SING DIA(cm)	9		воттог	M OF	4.00			
WATER TABL	E(cm)	600		CA	SING ABOVE	30	MET	HOD OF	TEST	Consta	ant He	ad	
YPE OF SOIL	-	Fine Sa	nd		TESTED BY	Umair							
	Obser	vations				1-		Calcula	tions				I
Elapsed Time	Fl (Li	ow ter)	Head	l (cm)	for Const	ant Head	Test = k	$c = \frac{q}{FH_c}$	=	7.15	E-05	cm/se	ec.
1.0	0.	, 113			for Variai	ble Head T	rest = k	$=\frac{A}{FT}$	=	N	A	cm/se	C
1.0	0.1	085			or $k = \frac{1}{F(t_{r}-t_{r})}$ k is the Perm	$\frac{1}{t}$ $\frac{\log_e}{H}$	Soil						
1.0	0.	085			q is the Rate	of Flow							
1.0	0.	085			F is the intak	e factor							
1.0	0.0	085			H _c is the con	stant head							
2.0	0.	170			H_1 is the vari	able head	measured	at time	t ₁ aft	er com	mence	ment o	f test
2.0	0.	141			H_2 is the vari	able head	measured	at time	t ₂ aft	er com	mence	ment o	f test
2.0	0.	141			A is the cross	s-sectional	area of ca	ising or s	tandp	piple as	appro	opriate	
2.0	0.	141			T is the basic	time facto	r						
2.0	0.	141			4.50 PI	lot showing [Discharge &	Flow vs T	ime El	apsed			
5.0	0.	141			4.00								
5.0	0.	368			₹ 3.00	~			-				_
5.0	0.	368			2.50 -		-						
10.0	0.	650			1.50 -				-				
10.0	0.	650			0.50								
10.0	0.	650			0.00	10	20	30	40	50		60	70
60.0	4.	015						⊤ime (mi	n)				

						Basic Test	Data						
BOREHOLE N	0.	BH-06	T		TEST NO	5		LOC	ATION	Bakhri	yawali		
DEPTH OF TE	ST	8		CAS	ING DIA(cm	9		вотт	OM OF	8.00			
(<u>m)</u>		. 				. 		<u></u>	ASING				
NATER TABL	E(cm)	600		CA	SING ABOVE	30	ME	THOD C	F TEST	Consta	int He	ad	
TYPE OF SOIL	-	Fine Sa	nd		TESTED BY	Umair							
1	Obser	vations					144 T	Calcu	lations				
Elapsed Time	F (L	low iter)	Head	(cm)	for Const	ant Head	Test =	$k = \frac{q}{FH_c}$	=	3.12	E-04	cm/se	c
1.0	0.	.339			for Varia	ble Head	Test =	$k = \frac{A}{FT}$	=	N	A	cm/se	c
1.0	0.	368			or $k = \frac{T}{F(t_{-})}$ k is the Perr	— $log_e \stackrel{H}{}_{H}$ neability o	f Soil						
1.0	0.	396			q is the Rate	e of Flow							
1.0	0.	368			F is the intal	ke factor							
1.0	0.	368			H_c is the cor	istant hea	H						
2.0	0.	763			${\sf H}_1$ is the var	iable heac	measure	ed at tim	e t ₁ aft	er com	nence	ment o	f test
2.0	0.	735			H_2 is the var	iable heac	measure	ed at tim	e t ₂ aft	er com	nence	ment o	f test
2.0	0.	707			A is the cros	s-sectiona	l area of	casing o	r stand	oiple as	appro	priate	
2.0	0.	707			T is the basi	c time fact	or						
2.0	0.	.650			F 14.00	lot showing	Discharge	& Flow v	s Time El	apsed			1
5.0	1.	725			12.00 -				-	-			
5.0	1.	753			10.00		_					1	
5.0	1.	.696			₩ 8.00 ₩ 6.00								
10.0	3.	393			100 4.00								
10.0	3.	110			2.00 -								
10.0	0.	424			0.00	10	20	30	40	50		60	70
60.0	17	.502			17	0.7.7		⊤ime (min)	20			1.107.0

Annexure D. Site Investigation Logs

D.1. Borehole Logs

Start D	ate: 02	-09-2014	End Date: 03-09-2	014					E	levat	ion: 1	00 (As	sum	ed)		
Easting	j: N.A		Northing: N.A						N	otes:	8					
Superv	isor: U	Imair	Construction Con	tracto	r: N.A											
Ground	lwater	Level: 6.0 m	Drilling Method: S	Straigh	nt Rota	ary										
Elevation (m)	Depth (m)	MATERIAL DE	ESCRIPTION	Graphic Log	Sample No.	Depth (m) Sample Svmbol	1st 15 cm	2nd 15 cm	3rd 15 cm	N Value	Sample Type	STD. [1	PEN DATA	IETRAT (blows	'ION ' /.30m	TEST 1) 100
0.0	0-	OU T	Ground Surface	11111		0-							тт		ТТ	ттт
-10		Brown, Stiff, Silt, Low Plastic	v to Medium													
		SILTY SAND Grey, Loose to Medi Sand, Trace Mica	um Dense, Silty		1		3	4	4	8	SS					
-2.0	2				2		3	2	5	9	SS			4		
-3.0	- 3- -				3	<u>3</u> <u>3</u> _]]	4	5	7	12	SS			ł	+	
-4.0	- 4	FINE SAND							_							
		Grey, Medium Dens Trace Mica, Trace C of 6m	e, Fine Sand, oncretion at Depth		4		4	0	0	12	SS			ļ		
-5.0	5				5		5	6	7	13	SS			ł		
-6.0	6	5 4			6		6	7	9	16	SS					
-7.0	- 7-	- -			7	<u>-</u> <u>-</u> -∏	6	6	9	15	SS					
-80		2 2 4								10						
					8		7	8	11	19	SS					
-9.0	۹. ۱				9		8	9	11	20	SS					
-10.0	- 10-															
1.2			DF	-	LEGE	END				DPII	LING	(ETHO)	ר			
SS ST AVV	- Spl - She /G - Roo	SAMPLER TY it Spoon elby Tube ck Core, 1-1/8"	NQ - Rock Core, UDS - Undisturve CT - Continuous	1-7/8" d Samj Tube	ole	HA - Han Rotary HA/LP - H HP - He	d Aug Hand A avy Pi	er Auger/L ercussi	Light ion	Perc	ussion	ine mol	2	SR - RC -	Straigh Rock	ıt Core

Start D	ate: 02	-09-2014	End Date: 03-09	-2014					Ele	vation:	, 100 (#	ssu	imed	d)		
Easting	g: N.A		Northing: N.A						Not	es:						
Superv	isor: U	mair	Construction Co	ontracto	r: N.A											
Ground	dwater	Level: 6.0 m	Drilling Method:	Straigh	it Rota	ary										
Elevation (m)	Depth (m)	MATERIAL DE	ESCRIPTION	Graphic Log	Sample No.	Depth (m) Sample Symbol	1st 15 cm	2nd 15 cm	3rd 15 cm	N value Sample Type	STI 1	D. PI DA	ENE TA (k	TRA	ГІОN Т :/.30m	'EST) 100
		FINE SAND Grey, Medium Dens Sand, Trace Mica	e to Dense, Fine		10	-1				UDS					ł	
-11.0	11 - -				11	- 11 <u>-</u> - - - - -	9	11	14 2	5 SS		-			•	
-12.0	- 12-				12	12 12 -	10	12	15 2	.7 SS		+				
-13.0	- - 13-															
	-				13		11	15	23 3	8 SS						
-14.0	14 - -				14		10	12	18 3	io ss						
-15.0	15 -				15	15 -	13	16	17 3	3 SS						
-16 0	- - 16-															
	-				16		14	17	19 3	6 SS	-					
-17.0	17- - -				17	╡ ₁₇ ┸┰ ╧┰┰╴╴	16	18 :	21 3	9 SS					+	
-18.0	- 18-				18	- 18 -	17	21	23 4	4 SS		-				
-19.0	- 19- -				19	- 19 - 	16	19 :	21 4	.0 SS		-			,	
-20.0	- 20-						and a	15.210 - 2								
	-			1999			18	21	24 4	5 SS		1	111	111	11	
SS ST AV	- Spli - She /G - Roc	SAMPLER TY t Spoon lby Tube k Core, 1-1/8"	PE NQ - Rock Core UDS - Undistur CT - Continuou	e, 1-7/8" ved Samp is Tube		HA - Hani Rotary HA/LP - H HP - Hei	d Aug Iand A avy Pi	er Auger/L ercussi	D .ight P on	RILLING Percussion	METH	DC		SR - RC -	Straigh Rock (t Core

Start D	ate: 02-	-09-2014	End Date: 03-09-	2014						E	levat	tion: 1	00 (A	ssur	ned)		
Easting	g: N.A		Northing: N.A							N	otes	:						
Superv	isor: U	mair	Construction Co	ntracto	r: N.A													
Ground	dwater	Level: 6.0 m	Drilling Method:	Straigh	it Rota	ary												
Elevation (m)	Depth (m)	MATERIAL DE	ESCRIPTION	Graphic Log	Sample No.	Depth (m)	Sample Symbol	1st 15 cm	2nd 15 cm	3rd 15 cm	N Value	Sample Type	STD	DAT	NET A (bl	RATI ows/.	ON T 30m)	EST
-21.0	21	FINE SAND Grey, Medium Dense Sand, Trace Mica	e to Dense, Fine		20	21-		10	10	20	45							
	-				21			10	19	20	39	SS						
-22.0	22- - -				22	22	Π	16	17	20	37	SS						
-23.0	23				23	23		16	19	20	39	SS						_
-24.0	- 24 -				24	- 24 - 24	Π	14	17	18	35	SS						-
-25.0	25 -				25	25		15	18	20	38	SS						
-26.0	26- 				26	26		16	19	19	38	SS					-	
-27.0	27-				27	27		16	17	19	36	SS						
-28.0	- 28- -				28	28	Π	15	17	19	36	SS						
-29.0	- 29- -				29	29		18	19	21	40	SS						
-30.0	- 30- -	BOTTOM OF BORE	HOLE		30	30		15	20	25	45	SS						
		SAMPLED TV	PF		LEGE	IND					DRII	LING	1ETHC	D				
SS ST AV	- Spli - She /G - Roc	t Spoon Iby Tube :k Core, 1-1/8"	NQ - Rock Core UDS - Undistury CT - Continuous	, 1-7/8" red Samp s Tube	ole	HA Rota HA/L HP	- Hani ry .P - H - Hea	d Aug Iand A avy Pi	er Augen ercuss	/Ligh sion	t Perc	ussion		1779 1	S	R - SI	raight !ock C	ore:

						onent, m	/3 24			••ii (i	¥5.j	E.M. 10	unan		
Start D	And Control of the service of the s		End Date: 31-08-2	2014					Ele	vation	: 21	8 m			
Easting	g: 7406	41.4	Northing: 321122	.3					Not	es:					
Superv	isor: U	mair	Construction Cor	ntracto	r: N.A										
Ground	dwater	Level: 4.0 m	Drilling Method: \$	Straigh	t Rota	ary									
Elevation (m)	Depth (m)	MATERIAL DE	ESCRIPTION	Graphic Log	Sample No.	Depth (m) Sample Svmbol	1st 15 cm	2nd 15 cm	3rd 15 cm	N Value Sample Type		STD. F D/ 1	PENE ATA (b	TRATION lows/.30	TEST m)
0.0	0	0117	Ground Surface) 		0-					-		1111		
		SILI Brown, Stiff, Silt, Lov Plastic	v to Medium												
-1.0		SILTY SAND Grey, Medium Dense Trace Mica	ə, Silty Sand,	 	1	'- <u> </u> -	3	4	5 1	10 S	S			1	
-2.0	2	FINE SAND Grey, Medium Dense Trace Mica	ə, Fine Sand,		2		3	8	3 1	16 S	S				
-3.0	3- - - -				3		5	8 1	0 1	18 S	S				
-4.0	4				4		8	12 1	6 2	28 S	S				
-5.0	5				5		7	11 1	2 2	23 S	s			+	
-0.0	0 - - - - 7				6		8	12 1	2 2	24 S:	S				
	, 				7					UE)S				
-0.0	-				8	°- - -	7	10 1	3 2	23 S	S			•	
-9.0	9- 				9		8	11 1	2 2	23 S	S				
-10.0	10-			000 (A) 20,000	10				1	14	Т	11	TIT	11 11	
-					LEGE	UND			D		C MA	THOD	2		

 SAMPLER TYPE
 DRILLING METHOD

 SS
 Split Spoon
 NQ - Rock Core, 1-7/8"
 HA - Hand Auger
 SR - Straight

 ST
 Shelby Tube
 UDS - Undisturved Sample
 Rotary
 Rotary

 AVVG - Rock Core, 1-1/8"
 CT - Continuous Tube
 HA/LP - Hand Auger/Light Percussion
 RC - Rock Core

 HP - Heavy Percussion
 HP - Heavy Percussion
 RC - Rock Core

Geo Technical Investigation	Report for Bhakrywa	la Landfill Site
-----------------------------	---------------------	------------------

Start D	Date: 30-08-2014 End Date: 31-08-2014 Elevation: 2 ig: 740641.4 Northing: 321122.3 Notes: visor: Umair Construction Contractor: N.A Image: Construction Contractor: N.A Image: Construction Contractor: N.A idwater Level: 4.0 m Dnilling Method: Straight Rotary Image: Construction Contractor: N.A Image: Construction Contractor: N.A idwater Level: 4.0 m Dnilling Method: Straight Rotary Image: Construction Contractor: N.A Image: Construction Contractor: N.A idwater Level: 4.0 m Dnilling Method: Straight Rotary Image: Construction Contractor: N.A Image: Construction Contractor: N.A idwater Level: 4.0 m Drilling Method: Straight Rotary Image: Construction Contractor: N.A Image: Construction Contractor: N.A idwater Level: 4.0 m Drilling Method: Straight Rotary Image: Construction Contractor: N.A Image: Construction Contractor: N.A idwater Level: 4.0 m Drilling Method: Straight Rotary Image: Construction Contractor: N.A Image: Construction Contractor: N.A idwater Level: 4.0 m Drilling Method: Straight Rotary Image: Construction Contractor: N.A Image: Construction Contractor: N.A idwater Level: 4.0 m Drilling Method: Straight Rotary Image: Constr																	
Easting	g: 7406	41.4	Northing: 321122	.3					N	otes								
Superv	visor: U	mair	Construction Cor	ntracto	r: N.A													
Ground	dwater	Level: 4.0 m	Drilling Method:	Straigh	nt Rota	ary				_								
Elevation (m)	Depth (m)	MATERIAL DE	SCRIPTION	Graphic Log	Sample No.	Depth (m) Sample Svmbol	1st 15 cm	2nd 15 cm	3rd 15 cm	N Value	Sample Typ	ST	D. F DA	PEN ATA	ETR/ (blov	ATION vs/.30	√ TE)m) 	: sт , <u>10</u> С
		FINE SAND Grey, Medium Dense Sand, Trace Mica	e to Dense, Fine		10		8	12	12	24	SS					•		
-11.0	11 - - -				11		9	12	17	29	SS	-						
-12.0	12-				12		11	14	17	31	SS						•	
-13.0 -13.0	- 13- -				13		12	15	18	33	SS					_	•	
-14.0	- 14				14	14 	12	16	17	33	SS					_	•	
-15.0	- 15-				15		13	16	16	27	00							
-16.0	- - 16-									52	55							
	-				16	- - -	14	16	17	33	SS							
-17.0	17- - -				17		16	16	17	33	SS	·					ł	
-18.0	18- - -				18		17	15	21	36	SS							
-19.0	- 19- -				19		16	19	17	36	SS						•	
-20.0	- 20-				20	20 -	18	19	20	39	SS							
		SAMPLER TY	PE		LEGE	ND				DRIL	LING	/ETH	OD					_
SS ST AV	- Spli - She /G - Roo	t Spoon Iby Tube Ik Core, 1-1/8"	NQ - Rock Core, UDS - Undisturv CT - Continuous	1-7/8" ed Samp Tube	ole	HA - Han Rotary HA/LP - H HP - He	d Aug Iand / avy P	jer Auger, ercuss	/Lighi sion	t Perc	ussion				SR RC	- Strai - Roc	ight :k Cc	ore

Start D	ate: 30	08-2014	End Date: 31-08-	2014				E	levat	ion: 2	18 m							
Easting	g: 7406	41.4	Northing: 321122				N	otes										
Superv	isor: U	mair	Construction Co	ntracto	r: N.A													
Ground	dwater	Level: 4.0 m	Drilling Method:	Straigh	t Rota													
Elevation (m)	Depth (m)	MATERIAL DE	SCRIPTION	Graphic Log	Sample No.	Depth (m) Sample Svmbol	1st 15 cm	2nd 15 cm	3rd 15 cm	N Value	Sample Type	STD. [1		VET (bl	RATIO ows/.	ON T 30m	ES.)	T
-21.0	- - - 21-	FINE SAND Grey, Medium Dense Sand, Trace Mica	e to Dense, Fine		20					39								
	-				21		16	16	20	36	SS					Í		
-22.0	22-				22		16	17	20	37	SS							
-23.0	- 23- -				23	23 -	16	13	20	33	SS							
-24.0	- 24-				74		14	17	10									
	-				24		14	-17	10	35	SS							
-25.0	25 - -				25	25 - -	15	19	20	39	SS						-	
-26.0	26- 				26		16	16	19	35	SS							
-27.0	- 27-				27	27 - 11	16	17	19	36	SS							
-28.0	- - 28-																	
					28		15	17	17	34	SS							
-29.0	29- - -				29		18	17	17	34	SS							
-30.0	- 30-	BOTTOM OF BORE	HOLE	39	SS													
			2014 End Date: 31-08-2014 Elevation: 2 4 Northing: 321122.3 Notes: ir Construction Contractor: N.A Image: Straight Rotary Image: Straight Rotary MATERIAL DESCRIPTION Image: Straight Rotary Image: Straight Rotary Image: Straight Rotary Image: Straight Rotary INE SAND rey, Medium Dense to Dense, Fine and, Trace Mica Image: Straight Rotary Image: Straight Rotary Image: Straight Rotary Image: Straight Rotary 21 16 16 16 17 20 36 SS 22 16 16 17 20 36 SS 22 16 17 20 33 SS 24 16 18 17 19 36 SS 24 16 16 19 20 39 SS 25 16 16 19 26 30 SS 26 15 17 17 34 SS 26 15 16 19 26 SS 27 16 16 19 20 <t< td=""><td></td><td></td><td></td><td></td></t<>															
SS ST AV	- Spli - She /G - Roc	SAMPLER TYI t Spoon lby Tube k Core, 1-1/8"	PE NQ - Rock Core UDS - Undisturv CT - Continuou	, 1-7/8" /ed Samp s Tube	le	HA - Han Rotary HA/LP - H HP - He	d Aug Hand 7 avy P	er Auger/ ercuss	'Light sion	DRIL Perc	LING N ussion	1ETHO	C	S	R - St 8C - R	raight !ock (Core	

Start D	ate: 29	-08-2014					EI	evat	ion: 2	59 m	1						
Easting	g: 7406	20.8	Northing: 321113.	.7					No	otes:	:						
Superv	visor: U	Imair	Construction Con	tracto	r: N.A												
Ground	dwater	Level: 5.5 m															
Elevation (m)	Depth (m)	MATERIAL DE	Depth (m) Sample Svmbol	1st 15 cm	2nd 15 cm	3rd 15 cm	N Value	Sample Type	STE). PE DAT	INET A (bl	RATIO	ON T 30m)	EST)			
0.0	0-	011 F	Ground Surface			0-	5										
-1 01		Brown, Stiff, Silt, Lov Plastic	v to Medium														
	-	SILTY SAND Grey, Medium Dense Trace Mica	ə, Silty Sand,		1		4	6	9	15	SS				ľ		
-2.0	2-				2		4	6	8	14	SS				•		
-3.0	- 3- -	FINE SAND Grey, Medium Dense Sand, Trace Mica	e to Dense, Fine		3		4	5	7	12	SS						
-4.0	4-				4		4	5	8	13	SS				4		
-5.0	- 5- -				5		9	13	15	28	SS					}	
-6.0	- 6 -				6		2				UDS					1	
-7.0	7				7		8	10	14	24	SS					•	
-8.0	- 8- -				8		8	11	13	24	SS					•	
-9.0	9 9 -				9		10	12	15	27	SS					1	
-10.0	undwater Level: 5.5 m Drilling Method: Straight Rotary g																
SS ST AV	- Spl - She √G - Roc	SAMPLER TYI it Spoon elby Tube ck Core, 1-1/8"	PE NQ - Rock Core, UDS - Undisturve CT - Continuous	1-7/8" ed Samp Tube	ole	HA - Hanı Rotary HA/LP - H HP - He:	d Aug Hand A avy Pe	er Auger/l	Light	DRIL Perc	LING N ussion	IETHO	D	S	3R - St RC - F	raight lock (Core

Start D	ate: 29	-08-2014	End Date: 29-08-2	2014					E	levat	tion: 2	259 m					
Easting	g: 7406	20.8	Northing: 321113	.7					N	otes	:						
Superv	isor: U	mair	Construction Cor	ntracto	r: N.A												
Ground	dwater	Level: 5.5 m	Drilling Method:	Straigh	it Rota	ary											
Elevation (m)	Depth (m)	MATERIAL DE	ESCRIPTION	Graphic Log	Sample No.	Depth (m) Sample Svmbol	1st 15 cm	2nd 15 cm	3rd 15 cm	N Value	Sample Type	STI 1	D. PE DAT	NET A (bl	RATIC ows/.3	0N TE 10m)	ST
	-	FINE SAND Grev. Dense. Fine S	and. Trace Mica		10	<u> </u>	11	14	18	32	SS					ł	
-11.0	- - 11-				1.20			rotert									
					11		12	15	18	33	SS					ŧ,	
-12.0	12 - -				12		13	19	19	38	SS					1	
-13.0	- 13-				12		45	40	24				<u></u>				
					13		10	18	21	39	SS					Î	
-14.0	14 - -				14	14- 1 - 1	14	17	19	36	SS		_			+	
-15.0	- 15						0.021	10								1	
					15	- -	14	18	21	39	SS					Î	
-16.0	16- -				16		15	17	21	36	SS					•	
-17.0	- - 17-				17		15	10	20								
	- 1 -				17	- II 	10	10	20	38	SS					Ī	
-18.0	18- - -				18		14	15	16	31	SS					4	
-19.0	- 19 -				19	19 19 - 11	13	14	17	31	89						
1	-									21						а а	
-20.0	20	9		<u> </u>	20	20 -	13	15	18	33	SS						
-			DE		LEGE	ND				יוסח			20				
SS	- Spl	SAMPLER I YI	NQ - Rock Core,	1-7/8"		HA - Han	d Aug	jer			LING N			S	iR - Str	aight	

 SAMPLER TYPE
 DRILLING METHOD

 SS
 - Split Spoon
 N.Q. - Rock Core, 1-7/8"
 HA. - Hand Auger
 SR. - Straight

 ST
 - Shelby Tube
 UDS
 - Undisturved Sample
 Rotary
 HA/LP
 - Hand Auger/Light Percussion
 RC - Rock Core

 AVVG - Rock Core, 1-1/8"
 CT
 - Continuous Tube
 HP - Heavy Percussion
 RC - Rock Core

Start D	ate: 29-	08-2014	End Date: 29-08-					E	levat	tion: 2	259 m								
Easting	j: 74062	20.8	Northing: 321113				N	otes	:										
Superv	isor: U	mair	Construction Co	ntracto	r: N.A														
Ground	water	Level: 5.5 m	Drilling Method:	Straigh	nt Rota	ary													_
Elevation (m)	Depth (m)	MATERIAL DI	ESCRIPTION	Graphic Log	Sample No.	Depth (m)	Sample Svmbol	1st 15 cm	2nd 15 cm	3rd 15 cm	N Value	Sample Typ	ST [D. P DA	ENE TA (I	TRA	TION s/.30r	TE: n)	sт <u>10</u>
-	-	FINE SAND Grev Medium Dens	e to Dense. Fine		20		Ш				33							Ī	Π
-21.0	21	Sand, Trace Mica	0.00000,1110			- 21-												1	
-21.0	-				21	-	:	14	17	20	37	SS		+	₩			+	₩
•	-					-													
-22.0	22				22	22	<u> </u>	16	15	20	35	SS		_				ļ	Щ
-	-																		
-23.0	23				23	23		16	15	20	05	00							
•	-						Щ	10			30	20						I	
-24.0	-24-					- 24-				_	_								
-	-				24	1	Щ	14	17	20	37	SS						1	ttt
-	-					-				22								1	
-25.0	25				25	25		15	15	20	35	SS		-					╢
:	-					1													
-26.0	26				26	26	Ш	16	16	19	35	SS		_					$\parallel \mid$
•	-							-		-	0								
-27.0	27				27	27		16	15	10									
	1				21	1	Щ	10	10	10	34	55						Ī	
-28.0	- 28-					- 28-													
:	-				28	2	Ш	15	13	19	32	SS							tt
	-					-				0.									
-29.0	29				29	29	·T	18	18	18	36	SS	\vdash	-					+
	-					-												$\ $	
-30.0	30	BOTTOM OF BORE	HOLE		30	30-	П	15	20	15	35	SS		_					
	-				LEGE	I . IND					~~							0.000	

 LEGEND

 SAMPLER TYPE
 DRILLING METHOD

 SS
 - Split Spoon
 NQ - Rock Core, 1-7/8"
 HA - Hand Auger
 SR - Straight

 ST
 - Shelby Tube
 UDS - Undisturved Sample
 Rotary
 HA/LP - Hand Auger/Light Percussion
 RC - Rock Core

 AWG - Rock Core, 1-1/8"
 CT - Continuous Tube
 HP - Heavy Percussion
 RC - Rock Core

	1.200 - 200.000	-		-	1						··· .	·/ -		22.	
Start D	ate: 31	08-2014	End Date: 01-09-20	014						Elev	ation: ′	100 (As	sumed)	
Easting	g: N.A		Northing: N.A							Note	s:				
Superv	isor: U	mair	Construction Cont	racto	r: N.A										
Ground	dwater	Level: 4.5 m	Drilling Method: S	traigł	nt Rota	ary		~							
Elevation (m)	Depth (m)	MATERIAL DE	ESCRIPTION	Graphic Log	Sample No.	Depth (m)	Symbol	1st 15 cm	2nd 15 cm	N Value	Sample Type	STD. D	PENE ATA (b	FRATION lows/.30	N TEST)m) 100
0.0	0	eu T	Ground Surface	11111	1	0-									TTTI
-1.0 ⁻	- - - 1	Brown, Silt													
- - -	-	SILTY SAND Grey, Medium Dense Trace Mica	e, Silty Sand,		1			3	5 1	³ 1′	SS			Ĩ	
-2.0	2- - - -	FINE SAND Grey, Medium Dense Trace Mica	ə, Fine Sand,		2		Π	4	6 1	³ 12	SS				
-3.0	3- - - -				3	- 3-4 - - - -	Π	5	6	7 13	SS			ł	
-4.0	4				4	- 4 - - 1 _ 1	Π	7	8 :	9 17	SS			•	
-5.0	5				5	- 5-4 - - - -	Π	8	9 1	1 20	SS				
-60	6				6	- ₆ - - - - -		8	11 1	1 22	SS			ŀ	
-7.0	7				7	+ 7-4 - - - - -	Π	8	10 1	¹ 2′	SS			ł	
-8.0	8- - -				8	- 8- - - - - - -	Π	8	10 1	3 23	SS			ł	
-9.0	9- - - 10-				9			9	13 1	4 27	SS				
-10.0	10	0		177 B.			11	di la constante		200	10	1	1111		
		SAMPLER TY	PE			:ND				DF	ILLING I	METHOD)		

NQ - Rock Core, 1-7/8" UDS - Undisturved Sample CT - Continuous Tube

HA - Hand Auger

Rotary HA/LP - Hand Auger/Light Percussion HP - Heavy Percussion

Geo Technical Investigation Report for Bhakrywala Landfill Site

25

SS - Split Spoon ST - Shelby Tube AVVG - Rock Core, 1-1/8"

SR - Straight

RC - Rock Core

Start D	ate: 31	-08-2014	End Date: 01-09-2	2014				E	levat	tion: 1	00 (A	SSL	ıme	ed)					
Easting	g: N.A		Northing: N.A						N	otes	•								
Superv	isor: U	mair	Construction Cor	ntracto	r: N.A														
Ground	dwater	Level: 4.5 m	Drilling Method:	Straigh	it Rota	ary													
Elevation (m)	Depth (m)	MATERIAL DE	ESCRIPTION	Graphic Log	Sample No.	Depth (m) Sample Svmbol	1st 15 cm	2nd 15 cm	3rd 15 cm	N Value	Sample Type	STC). PI DA	ENI TA (ETR (blo	tatio ws/.:	⊃N T 30m ∟∟	res 1)	:т 100
-		FINE SAND Grey, Medium Dens Sand, Trace Mica	e to Dense, Fine		10		11	13	15	28	SS					5.0	1		
-11.0	11				11		10	14	16	30	SS		1				•		
-12.0	- 12-				5425	12					-								
	-				12	-) -			_		UDS								
-13.0	13- - -				13		11	13	19	32	SS		Î				•		
-14.0	- 14 -				14	<u>1</u>	11	12	17	29	SS		-		_		•		
-15.0	- 15-						240.2												
	-				15		13	16	19	35	SS								
-16.0	16- - -				16		15	17	19	36	SS		+				-		
-17.0	- - 17-				17		14	16	19	25	22		_						
	-				2,253		115481	20740-11		55	00								
-18.0	18 - -				18		16	18	21	39	SS								
-19.0	- 19- -				19	- <u>19</u> 19 - 	13	17	21	38	SS								
-20.0	20				224														
	-						15	18	19	37	SS	1		П	Ш	3	U	П	T
-		SAMPLER TY	PE	-			800			DRIL	LING N	1ETHC	D		1		12 - 2		-

NQ - Rock Core, 1-7/8" UDS - Undisturved Sample CT - Continuous Tube

SR - Straight RC - Rock Core

SS - Split Spoon ST - Shelby Tube AVVG - Rock Core, 1-1/8"

Geo Technical Investigation Re	port for Bhakrywala Landfill Site
--------------------------------	-----------------------------------

Start D	ate: 31	-08-2014	End Date: 01-09-2	2014		-			E	Eleva	tion: 1	00 (A	ssu	mec	1)			
Easting	g: N.A		Northing: N.A						Ν	lotes								
Superv	isor: U	mair	Construction Cor	ntracto	r: N.A													
Ground	dwater	Level: 4.5 m	Drilling Method: \$	Straigh	nt Rota	iry												
Elevation (m)	Depth (m)	MATERIAL DE	SCRIPTION	Graphic Log	Sample No.	Depth (m)	sample Symbol	1st 15 cm 2nd 15 cm	3rd 15 cm	N Value	Sample Typ	STD 1	. PE DAT	ENE 'A (b	TRAT olows	10N 1 /.30m	TES I)	;т 100
-	5 	FINE SAND Grev Dense Fine S	and Trace Mica		20	- 7	Π			37				Π			Π	Π
		oloy, Bense, Fille o	ana, mace mica			-												
-21.0	21				21	-	10000	17 19	21	40	SS						╟	
	-					-					2							
-22.0	22-			22 22 16 17 16 17 23 23 14 16 17 14 16														
-	-				10-88-5		bullet.											
-23.0	- 23-					-												
	-			$\begin{array}{c} 22 \\ 22 \\ 22 \\ 22 \\ 22 \\ 23 \\ 23 \\ 23 $												Î	Ħ	III
24 0				Trace Mica														
-24.0	- 24			$\begin{array}{cccccccccccccccccccccccccccccccccccc$										╫			+	
2	- -																	
-25.0	25				25	25	· 19	36	22									
-	-									00					1			
-26.0	- 26-				212	26	5/10/14							0				
5. 2	8 . 22				26			17 19	22	41	SS						T	
	-					-											8	
-27.0	2/				27	2/		16 20	22	42	SS		-	₩	₩	┿	╟	
	_																	
-28.0	28				28	28	Π	17 19	23	12	99							
-	-					Ē	Ш_			42	- 00							
-29.0	- 29-					29					_							
	-				29			18 21	23	44	SS						ţ	
						-												
-30.0	30-		HOLE /	\square	30	30		15 21	24	45	SS					+		
	-				LEGE	ND	# .# .					•						
SS	- Spli	SAMPLER TY it Spoon	PE NQ - Rock Core,	1-7/8"	100 401	HA -	Hand ,	Auger		DRIL	LING N	1ETHC	D	2	SR - S	Straigh	it	

RC - Rock Core

Annexure E. Site Photographs

Geo Technical Investigation Report for Bhakrywala Landfill Site

Geo Technical Investigation Report for Bhakrywala Landfill Site

Soil Description Explanation Sheet (1 of 2)

DEFINITION:

In engineering terms soil includes every type of uncemented or partially cemented inorganic or organic material found in the ground. In practice, if the material can be remoulded or disintegrated by hand in its field condition or in water it is described as a soil. Other materials are described using rock description terms.

CLASSIFICATION SYMBOL & SOIL NAME

Soils are described in accordance with the Unified Soil Classification (UCS) as shown in the table on Sheet 2.

NAME	SUBDIVISION	SIZE
Boulders		>200 mm
Cobbles		63 mm to 200 mm
Gravel	coarse	20 mm to 63 mm
	medium	6 mm to 20 mm
	fine	2.36 mm to 6 mm
Sand	coarse	600 µm to 2.36 mm
	medium	200 µm to 600 µm
	fine	75 µm to 200 µm

PARTICLE SIZE DESCRIPTIVE TERMS

MOISTURE CONDITION

- Looks and feels dry. Cohesive and cemented soils are hard, friable or powdery. Uncemented granular soils run freely through hands. Dry
- Moist Soil feels cool and darkened in colour. Cohesive soils can be moulded. Granular soils tend to cohere.
- As for moist but with free water forming on hands Wet when handled.

CONSISTENCY OF COHESIVE SOILS

TERM	UNDRAINED STRENGTH ^S U (kPa)	FIELD GUIDE
Very Soft	<12	A finger can be pushed well into the soil with little effort.
Soft	12 - 25	A finger can be pushed into the soil to about 25mm depth.
Firm	25 - 50	The soil can be indented about 5mm with the thumb, but not penetrated.
Stiff	50 - 100	The surface of the soil can be indented with the thumb, but not penetrated.
Very Stiff	100 - 200	The surface of the soil can be marked, but not indented with thumb pressure.
Hard	>200	The surface of the soil can be marked only with the thumbnail.
Friable	-	Crumbles or powders when scraped by thumbnail.

DENSITY OF GRANULAR SOILS

TERM	DENSITY INDEX (%)
Very loose	Less than 15
Loose	15 - 35
Medium Dense	35 - 65
Dense	65 - 85
Very Dense	Greater than 85

MINOR COMPONENTS

TERM	ASSESSMENT GUIDE	PROPORTION OF MINOR COMPONENT IN:
Trace of	Presence just detectable by feel or eye, but soil properties little or no different to general properties of primary component.	Coarse grained soils: <5% Fine grained soils: <15%
With some	Presence easily detected by feel or eye, soil properties little different to general properties of primary component.	Coarse grained soils: 5 - 12% Fine grained soils: 15 - 30%

SOIL STRUCTURE

	ZONING	CEMENTING			
Layers	Continuous across exposure or sample.	Weakly cemented	Easily broken up by hand in air or water.		
Lenses	Discontinuous layers of lenticular shape.	Moderately cemented	Effort is required to break up the soil by hand in air or water.		
Pockets	Irregular inclusions of different material.				

GEOLOGICAL ORIGIN W

WEATHERED Extremely weathered material	IN PLACE SOILS Structure and fabric of parent rock visible.
Residual soil	Structure and fabric of parent rock not visible.
TRANSPORT	ED SOILS

Acolian Soli	Deposited by wind.
Alluvial soil	Deposited by streams and rivers.
Colluvial soil	Deposited on slopes (transported downslope by gravity).
Fill	Man made deposit. Fill may be significantly more variable between tested locations than naturally occurring soils.
Lacustrine soil	Deposited by lakes.
Marine soil	Deposited in ocean basins, bays, beaches and estuaries.

Soil Description Explanation Sheet (2 of 2)

FIELD IDENTIFICATION PROCEDURES (Excluding particles larger than 60 mm and basing fractions on estimated mass)			USC	PRIMARY NAME				
3 mm is		GRAVELS More than half of coarse fraction is larger than 2.0 mm	EAN VELS ttle no es)	Wide range in grain size and substantial amounts of all intermediate particle sizes.		GW	GRAVEL	
	eye)		GRA GRA fin (Li	Prede with i	Predominantly one size or a range of sizes with more intermediate sizes missing.		GP	GRAVEL
SOILS s than 6			/ELS FINES ciable unt nes)	Non- proce	Non-plastic fines (for identification procedures see ML below)		GM	SILTY GRAVEL
RAIINED rials less 0.075 m	e nakec		GRA WITH (Appre amo of fi	Plast see C	Plastic fines (for identification procedures see CL below)		GC	CLAYEY GRAVEL
ARSE GF of mate ger than	ible to th	DS f of coarse than 2.0 mm	CLEAN SANDS (Little or no fines)	Wide range in grain sizes and substantial amounts of all intermediate sizes missing		SW	SAND	
an 50% lan	icle vis			Predominantly one size or a range of sizes with some intermediate sizes missing.		SP	SAND	
More the	llest part	SAN e than ha is smalle	NDS I FINES eciable ount ines)	Non-plastic fines (for identification procedures see ML below).		SM	SILTY SAND	
	the sma	More	SA WITH (Appr am of 1	Plast see C	Plastic fines (for identification procedures see CL below).		SC	CLAYEY SAND
	out		IDENTIFICAT	ION PI	ROCEDURES ON FRA	ACTIONS <0.2 mm.		
nan	s at	SILTS & CLAYS Liquid limit less than 50	DRY STREN	GTH	DILATANCY	TOUGHNESS		
olLS less tl 075 ml	nm particle i		None to Low	1	Quick to slow	None	ML	SILT
ED SC aterial an 0.0			Medium to H	ligh	None	Medium	CL	CLAY
RAIN of ma	.075 n		Low to medi	um	Slow to very slow	Low	OL	ORGANIC SILT
-INE G n 50% is sm	(A 0	S & CLAYS fuid limit ter than 50	Low to medium		Slow to very slow	Low to medium	MH	SILT
re tha 3 mm			High		None	High	СН	CLAY
Mo		SILT. Lic great	Medium to High		None	Low to medium	ОН	ORGANIC CLAY
HIGHLY ORGANIC Readily identified by c SOILS frequently by fibrous to			y colour, odour, spon Is texture.	gy feel and	Pt	PEAT		

SOIL CLASSIFICATION INCLUDING IDENTIFICATION AND DESCRIPTION

• Low plasticity – Liquid Limit W_L less than 35%. • Modium plasticity – W_L between 35% and 50%.

COMMON DEFECTS IN SOIL

TERM	DEFINITION	DIAGRAM	TERM	DEFINITION	DIAGRAM
PARTING	A surface or crack across which the soil has little or no tensile strength. Parallel or sub parallel to layering (eg bedding). May be open or closed.		SOFTENED ZONE	A zone in clayey soil, usually adjacent to a defect in which the soil has a higher moisture content than elsewhere.	MILLION COMMUNICATION OF THE OWNER OF THE OWNE
JOINT	A surface or crack across which the soil has little or no tensile strength but which is not parallel or sub parallel to layering. May be open or closed. The term 'fissure' may be used for irregular joints <0.2 m in length.		TUBE	Tubular cavity. May occur singly or as one of a large number of separate or inter-connected tubes. Walls often coated with clay or strengthened by denser packing of grains. May contain organic matter	
SHEARED ZONE	Zone in clayey soil with roughly parallel near planar, curved or undulating boundaries containing closely spaced, smooth or slickensided, curved intersecting joints which divide the mass into lenticular or wedge shaped blocks.		TUBE CAST	Roughly cylindrical elongated body of soil different from the soil mass in which it occurs. In some cases the soil which makes up the tube cast is cemented.	
SHEARED SURFACE	A near planar curved or undulating, smooth, polished or slickensided surface in clayey soil. The polished or slickensided surface indicates that movement (in many cases very little) has occurred along the defect.		INFILLED SEAM	Sheet or wall like body of soil substance or mass with roughly planar to irregular near parallel boundaries which cuts through a soil mass. Formed by infilling of open joints.	

ī

